875 resultados para Mathematics teaching
Resumo:
This paper intends to analyze which contribution for teachers formative training the participation on extension projects can bring to the bachelors in Mathematics teaching. The research was conducted during the developing of a Project from the Program of Extension - Programa de Extensão UFU/Comunidade (PEIC) in a municipal school located in a country zone from Uberlândia-MG. The research was constituted by a series of activities with students from the ninth year of the Fundamental Education, Middle School. The main focus is the work developed by two bachelors of Mathemactics teaching from the Federal University from Uberlândia who were part of the PEIC team. This present research intends to answer the following question: How the extension project “Information technology and communication on Mathematics problem resolution in country zone schools” has contribited to reinforce and to (re)criate the fomative experiences of students from the Mathematics teaching course who have developed such project? The presente study is from a qualitative nature and has made use of the partaker searching methodology. The presente paper was organized in three chapters. On chapter I evidence is given to theoretical discussion made, having as main references the works of Larrosa, Ponte e Shön. Chapter II brings the description of the three activities that were developed and aplied during the PEIC Project, which are: Problems in the Park, Inaccessible Hight and Lili Game. On chapter III, the data analysis is presented. The data was obtained through instruments of registration such as: camera recording, photografic material, meetings reports, field notes, surveys and semi-structured interviews. The initial hypothesis aim is on the fact that the participation on extention projects during the graduation course can bring rich contribution for the teachers to be, since it’s going to provide the knowledge and chalenge close to the one from the future profession. With the analysis of the obtained results from the colected data, it was possible to conclude that the PEIC has provided the bachelors in Mathematics teching the opportunity of recreate and potenciate their formative experiences. Such opportunity happened in situations that involved, for example, planning makings, development of colective work, softwares usage, different school spaces and the direct interaction with school bureaucracy. Beyond that, it was possible to work with the cocepts of reflection in action in a way to contribute to the professional development of the future Mathematics teachers. Thereby, in our final considerations, is possible to conclude that extension projects performed during the graduation course can bring great contributions to the professional formation of the bachelors in Mathematics teaching, among them we highlight the potentiation of the previous formative experiences and the development of colective work and behavior related to a reflexive teacher.
Resumo:
The purpose of this study is to explore teacher self-efficacy at a time of radical mathematical reform. Project Maths – the new initiative which was rolled out nationwide in 2010 differs from previous attempts at innovation in that it targets a much closer connection between curriculum and pedagogy. Gone are the days of well-rehearsed routines where the role of the mathematician was essentially that of demonstrator. Teaching for understanding is now the main ‘official’ pedagogical focus, with emphasis on the practitioner playing the part of mediator between subject-matter and student. Mathematical instruction is not merely concerned with the transmission of knowledge and skills which is a particular pedagogical position to take. It is also an emotional practice (Hargreaves, 1998) that colours and expresses the feelings and actions of practitioners. While emotion plays a key role in teachers’ commitment to curricular reform, it is also shaped by the social and cultural contexts of mathematical change, alongside with the attitudes and beliefs of the mathematical teaching community. Inspired by Bandura’s theory of learning (1986), this investigation aims to shed light on the complex interplay between so-called mastery and vicarious experiences, social persuasion and physiological states. Vygotsky’s view of learning (1978) as a socio-cultural process is also drawn upon, as it provides a useful structure against which teacher self-efficacy and professional development can be examined. Finally, Hiebert’s theory (1986) is used to examine mathematics teaching self-efficacy and mathematics self-efficacy.
Resumo:
El estudio tuvo como propósito determinar la efectividad relativa del ABP, comparado con el método tradicional para desarrollar habilidades de resolución de problemas en el aprendizaje de las aplicaciones de la solución de triángulos en el grado 10º de la Institución Educativa El Progreso, de El Carmen de Viboral, Antioquia. La enseñanza-aprendizaje de las matemáticas sustentadas con la estrategia didáctica Aprendizaje Basado en Problemas permite a los estudiantes y docentes aproximarse al conocimiento de una manera similar a como lo hacen los científicos; el primer paso es una situación de duda, perplejidad del estudiante provocada por la Situación Problema planteada por el docente, el segundo un momento de “sugerencias” en las que la mente salta hacia adelante en busca de una posible solución (Dewey, 1933, p. 102). El tercer paso “intelectualización” de la dificultad que se ha percibido para convertirlo en un problema que debe solucionarse (Dewey, 1933, p. 103). La cuarta es “la idea conductora o hipótesis”, las cuales se basan en la formulación de explicaciones sugeridas o soluciones posibles (Dewey, 1933, p. 104). El quinto paso sería el “razonamiento”, consiste en la elaboración racional de una idea que se va desarrollando de acuerdo a las habilidades de cada persona (Dewey, 1933, p. 105). El paso final es la “comprobación de hipótesis” en situaciones reales. Este proceso se evidenció a través de cuatro Situaciones-Problema enfocadas desde un contexto auténtico “la remodelación del parque principal de El Carmen de Viboral” con el objetivo de motivar a los estudiantes para el aprendizaje de algunos conceptos matemáticos y el desarrollo de habilidades de resolución de problemas. La metodología de la investigación fue un diseño cuasi-experimental con grupo experimental compuesto por 38 estudiantes del grado 10º2 y grupo control con 37 estudiantes del grado 10º1. Se empleó como técnica de recolección de la información una prueba pre-test antes del tratamiento y una prueba post-test que se aplicó después del tratamiento a ambos grupos; se aplicó también una escala de satisfacción de los estudiantes con la metodología tradicional en ambos grupos y una escala de satisfacción con la estrategia didáctica ABP sólo al grupo experimental; la observación directa, y el portafolio que evidenciaba todas las construcciones de los estudiantes. La aplicación de la estrategia didáctica experimental se aplicó durante 4 meses, con una intensidad horaria de cuatro horas semanales, tiempo durante el cual se implementaron las cuatro Situaciones-Problema. Se concluyó entre otros aspectos que el 86,5% de los estudiantes encuentran las clases de matemáticas como interesantes, contextualizadas, aplicables y significativas, mientras que antes del tratamiento sólo el 44,4% se encontraba satisfecho con las clases de matemáticas, con una diferencia en cambio de actitud de 42,1% frente a las clases de matemáticas con la metodología tradicional. En el análisis comparativo de adquisición de competencias específicas se demuestra que el grupo experimental demostró ser matemáticamente más competente con respecto al grupo control en todas las competencias evaluadas: capacidad de modelación, inductiva, comunicativa y habilidad procedimental. Además, el proyecto de investigación tuvo un valor agregado: 10 estudiantes tuvieron la oportunidad de conocer más sobre su cultura ceramista mediante el diseño y construcción de mosaicos que los ofreció la casa de la cultura en forma gratuita.
Resumo:
O presente trabalho descreve uma proposta de atividade educacional direcionada para professores de Matemática, envolvendo situações-problema no ensino de Matemática Financeira para ser aplicado com alunos do Ensino Médio. Tais atividades tem como objetivo fornecer um contexto real, no qual o estudante esteja inserido. O trabalho se divide em quatro partes: a introdução de uma situaçãoproblema envolvendo juros simples, o conhecimento matemático, a resolução da situação-problema e a proposta de atividade educacional. Diferenciando-se do que usualmente é encontrado nos livros didáticos, a proposta aqui apresentada propõe estudar conteúdos matemáticos de forma articulada, envolvendo o conceito de porcentagem vinculado com funções lineares e juros simples com função afim e progressão aritmética. Dessa forma, é apresentada uma sequência de aulas envolvendo situações-problema através de atividades, adequadas para os alunos.
Resumo:
Das Fach Mathematik stellt Lehrende in vielfältiger Weise vor Herausforderungen: Die Inhalte fallen den meisten Studierenden schwer, die verschiedenen Lerntypen machen sich besonders deutlich bemerkbar und konventionelle Lehrmethoden erfordern hohe Selbstdisziplin, weil der Stoff hier kontinuierlich nachgearbeitet werden muss. Dies äußert sich in hohen Durchfall- und Abbruchquoten in einem Studienfach, das ausgezeichnete Arbeitsplatzchancen in Aussicht stellt und dessen Absolventen in der Wirtschaft und Industrie stark nachgefragt sind. Eine Überlegung, wie dieser Herausforderung zukünftig begegnet werden kann, besteht darin, Studierende mit Hilfe entsprechender Anreize mehr in die Lehrveranstaltungen einzubinden und auf diesem Weg eine tiefergehende Beschäftigung mit den Inhalten zu unterstützen. Dabei soll eine aktive und gleichzeitig im Semesterverlauf kontinuierliche Auseinandersetzung mit den mathematischen Inhalten angeregt und gefördert werden. In diesem Beitrag werden zwei Ideen vorgestellt, die sich an der didaktischen Methode „Lernen durch Lehren“ (LdL) orientieren und die eine Aktivierung sowie eine stärkere thematische Einbindung der Studierenden zum Ziel haben. (DIPF/Orig.)
Resumo:
Las estrategias metodológicas utilizadas en este trabajo tratan de mejorar el rendimiento y conocimiento del bloque curricular Álgebra y Geometría en los estudiantes del primero de bachillerato del Colegio Nacional Mixto “San Joaquín”. Las estrategias metodológicas planificadas para el bloque curricular Álgebra y Geometría fueron aplicadas en su totalidad, pero hubieron inconvenientes que se fueron solucionando en el proceso de la enseñanza – aprendizaje del bloque como: la utilización del laboratorio de computación, las diferentes actividades extra curriculares y las políticas de la institución. Las actividades lúdicas elaboradas en este bloque curricular,son las que más disfrutaron los estudiantes, por ser diferentes a las actividades tradicionales que se realiza en la enseñanza de la Matemática, otra actividad que causo novedad, es la aplicación de las TIC, como es el caso de la utilización del software GeoGebra y Modellus que permiten resolver ejercicios y problemas mediante gráficas y animaciones, otra herramienta de aprendizaje didáctico es la aplicación del internet como medio de consulta para reforzar significativamente los conocimientos. Los resultados de las evaluaciones aplicadas a los estudiantes de los primeros de bachillerato de esta institución, demuestran que las estrategias metodológicas utilizadas, lograron mejorar el rendimiento y conocimientos del bloque Álgebra y Geometría.
Resumo:
Matematiken är en abstrakt vetenskap. Laborativt arbete med konkret material sägs kunna överbrygga glappet mellan abstrakt och konkret. Denna kvalitativa studie syftar utforska vilka möjligheter och begränsningar lågstadielärare erfar kring konkret material. Resultatet visar att en vanlig uppfattning bland lågstadielärare är att konkret material besitter den positiva egenskapen att stötta elever i alla åldrar och nivåer i arbetet med att utveckla matematisk förståelse. Detta genom att konstruera inre bilder av matematiken hos eleverna, vilka sedan kan stötta eleverna på vägen mot matematisk abstraktion och generalisering. Arbetssättet tycks också kunna väcka intresse, nyfikenhet och lust att lära matematik samt bjuda in till rikare möjligheter till kommunikation jämfört med läroboksfokuserad undervisning. Dock har valet av konkret material betydelse. Negativa faktorer som uppmärksammats är att leklust riskerar ta fokus från matematiken samt att duktiga elever särskiljer laborativ matematik med konkret material från "riktig" matematik i läroboken. Dokumentationen av arbetet kring det konkreta materialet är dessutom tidskrävande. En slutsats som dras är att laborativt arbete med konkret material inte ensamt kan stå som bas för elevers matematiska utveckling. Däremot kan arbetssättet kombineras med lärobokens färdighetsträning och matematikdiskussioner och tillsammans bidra till fördjupad förståelse genom att eleverna i ett varierat arbetssätt tillåts möta matematikens olika uttrycksformer.
Resumo:
This paper summarizes a project that is contributing to a change in the way of teaching and learning Mathematics. Mathematics is a subject of the Accounting and Administration course. In this subject we teach: Functions and Algebra. The aim is that the student understand the basic concepts and is able to apply them in other issues, when possible, establishing a bridge between the issues that they have studied and their application in Accounting. As from this year, the Accounting course falls under in Bologna Process. The teacher and the student roles have changed. The time for theoretical and practical classes has been reduced, so it was necessary to modify the way of teaching and learning. In the theoretical classes we use systems of multimedia projection to present the concepts, and in the practical classes we solve exercises. We also use the Excel and the mathematical open source software wxMaxima. To supplement our theoretical and practical classes we have developed a project called MatActiva based on the Moodle platform offered by PAOL - Projecto de Apoio Online (Online Support Project). With the creation of this new project we wanted to take advantage already obtained results with the previous experiences, giving to the students opportunities to complement their study in Mathematics. One of the great objectives is to motivate students, encourage them to overcome theirs difficulties through an auto-study giving them more confidence. In the MatActiva project the students have a big collection of information about the way of the subject works, which includes the objectives, the program, recommended bibliography, evaluation method and summaries. It works as material support for the practical and theoretical classes, the slides of the theoretical classes are available, the sheets with exercises for the students to do in the classroom and complementary exercises, as well as the exams of previous years. Students can also do diagnostic tests and evaluation tests online. Our approach is a reflexive one, based on the professional experience of the teachers that explore and incorporate new tools of Moodle with their students and coordinate the project MatActiva.
Resumo:
Distance learning - where students take courses (attend classes, get activities and other sort of learning materials) while being physically separated from their instructors, for larger part of the course duration - is far from being a “new event”. Since the middle of the nineteenth century, this has been done through Radio, Mail and TV, taking advantage of the full educational potential that these media resources had to offer at the time. However, in recent times we have, at our complete disposal, the “magic wonder” of communication and globalization - the Internet. Taking advantage of a whole new set of educational opportunities, with a more or less unselfish “look” to economic interests, focusing its concern on a larger and collective “welfare”, contributing to the development of a more “equitable” world, with regard to educational opportunities, the Massive Open Online Courses (MOOCs) were born and have become an important feature of the higher education in recent years. Many people have been talking about MOOCs as a potential educational revolution, which has arrived from North America, still growing and spreading, referring to its benefits and/or disadvantages. The Polytechnic Institute of Porto, also known as IPP, is a Higher Education Portuguese institution providing undergraduate and graduate studies, which has a solid history of online education and innovation through the use of technology, and it has been particularly interested and focused on MOOC developments, based on an open educational policy in order to try to implement some differentiated learning strategies to its actual students and as a way to attract future ones. Therefore, in July 2014, IPP launched the first Math MOOC on its own platform. This paper describes the requirements, the resulting design and implementation of a mathematics MOOC, which was essentially addressed to three target populations: - pre-college students or individuals wishing to update their Math skills or that need to prepare for the National Exam of Mathematics; - Higher Education students who have not attended in High School, this subject, and who feel the need to acquire basic knowledge about some of the topics covered; - High School Teachers who may use these resources with their students allowing them to develop teaching methodologies like "Flipped Classroom” (available at http://www.opened.ipp.pt/). The MOOC was developed in partnership with several professors from several schools from IPP, gathering different math competences and backgrounds to create and put to work different activities such video lectures and quizzes. We will also try to briefly discuss the advertising strategy being developed to promote this MOOC, since it is not offered through a main MOOC portal, such as Coursera or Udacity.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
Forty grade 9 students were selected from a small rural board in southern Ontario. The students were in two classes and were treated as two groups. The treatment group received instruction in the Logical Numerical Problem Solving Strategy every day for 37 minutes over a 6 week period. The control group received instruction in problem solving without this strategy over the same time period. Then the control group received the treat~ent and the treatment group received the instruction without the strategy. Quite a large variance was found in the problem solving ability of students in grade 9. It was also found that the growth of the problem solving ability achievement of students could be measured using growth strands based upon the results of the pilot study. The analysis of the results of the study using t-tests and a MANOVA demonstrated that the teaching of the strategy did not significaritly (at p s 0.05) increase the problem solving achievement of the students. However, there was an encouraging trend seen in the data.
Resumo:
Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.
Resumo:
This project addressed the need for more insightful, current, and applicable resources for intermediate math teachers in Canadian classrooms. A need for a handbook in this division seemed warranted by a lack of government resource support. Throughout an extensive review of the literature, themes and topics for the handbook emerged. The handbook was designed to not only provide educators with examples of effective teaching strategies within the mathematics classroom but to also inform them about the ways in which their personal characteristics and personality type could affect their students and their own pedagogical practices. Three teaching professionals who had each taught in an intermediate math class within the past year evaluated the handbook. The feedback received from these educators was directly applied to the first draft of the handbook in order to make it more accessible and applicable to other math teachers. Although the handbook was written with teachers in mind, the language and format used throughout the manual also make it accessible to parents, tutors, preservice education students, and educational administrators. Essentially, any individual who is hoping to inspire and educate intermediate math students could make use of the content within the handbook.
Resumo:
Proporciona una introducción general a la enseñanza de las matemáticas en las escuelas de primaria y secundaria. Sitúa el plan de estudios de esta asignatura en el contexto de la alfabetización aritmética de toda la escuela y analiza, entre otras, cuestiones importantes: la planificación y dirección de la clase, la investigación en matemáticas, tecnologías de la información y la comunicación y desarrollo personal y profesional de los docentes.