900 resultados para Markov Chains
Resumo:
Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.
Resumo:
Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.
Resumo:
The use of behavioural indicators of suffering and welfare in captive animals has produced ambiguous results. In comparisons between groups, those in worse condition tend to exhibit increased overall rate of Behaviours Potentially Indicative of Stress (BPIS), but when comparing within groups, individuals differ in their stress coping strategies. This dissertation presents analyses to unravel the Behavioural Profile of a sample of 26 captive capuchin monkeys, of three different species (Sapajus libidinosus, S. flavius and S. xanthosternos), kept in different enclosure types. In total, 147,17 hours of data were collected. We explored four type of analysis: Activity Budgets, Diversity indexes, Markov chains and Sequence analyses, and Social Network Analyses, resulting in nine indexes of behavioural occurrence and organization. In chapter One we explore group differences. Results support predictions of minor sex and species differences and major differences in behavioural profile due to enclosure type: i. individuals in less enriched enclosures exhibited a more diverse BPIS repertoire and a decreased probability of a sequence with six Genus Normative Behaviour; ii. number of most probable behavioural transitions including at least one BPIS was higher in less enriched enclosures; iii. proeminence indexes indicate that BPIS function as dead ends of behavioural sequences, and proeminence of three BPIS (pacing, self-direct, active I) were higher in less enriched enclosures. Overall, these data are not supportive of BPIS as a repetitive pattern, with a mantra-like calming effect. Rather, the picture that emerges is more supportive of BPIS as activities that disrupt organization of behaviours, introducing “noise” that compromises optimal activity budget. In chapter Two we explored individual differences in stress coping strategies. We classified individuals along six axes of exploratory behaviour. These were only weakly correlated indicating low correlation among behavioural indicators of syndromes. Nevertheless, the results are suggestive of two broad stress coping strategies, similar to the bold/proactive and shy/reactive pattern: more exploratory capuchin monkeys exhibited increased values of proeminence in Pacing, aberrant sexual display and Active 1 BPIS, while less active animals exhibited increased probability in significant sequences involving at least one BPIS, and increased prominence in own stereotypy. Capuchin monkeys are known for their cognitive capacities and behavioural flexibility, therefore, the search for a consistent set of behavioural indictors of welfare and individual differences requires further studies and larger data sets. With this work we aim contributing to design scientifically grounded and statistically correct protocols for collection of behavioural data that permits comparability of results and meta-analyses, from whatever theoretical perspective interpretation it may receive.
Resumo:
Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Resumo:
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Resumo:
We present some estimates of the time of convergence to the equilibrium distribution in autonomous and periodic non-autonomous graphs, with ergodic stochastic adjacency matrices, using the eigenvalues of these matrices. On this way we generalize previous results from several authors, that only considered reversible matrices.
Resumo:
Let {Ƶn}∞n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions
Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.
Given functions Qi(i(0)) such that
(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1
(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1
(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),
we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by
Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qi(Ƶn - 1, Ƶn - 2, …)
With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].
Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.
Resumo:
p.21-27
Resumo:
We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.
Resumo:
This paper studies the asymptotic optimality of discrete-time Markov decision processes (MDPs) with general state space and action space and having weak and strong interactions. By using a similar approach as developed by Liu, Zhang, and Yin [Appl. Math. Optim., 44 (2001), pp. 105-129], the idea in this paper is to consider an MDP with general state and action spaces and to reduce the dimension of the state space by considering an averaged model. This formulation is often described by introducing a small parameter epsilon > 0 in the definition of the transition kernel, leading to a singularly perturbed Markov model with two time scales. Our objective is twofold. First it is shown that the value function of the control problem for the perturbed system converges to the value function of a limit averaged control problem as epsilon goes to zero. In the second part of the paper, it is proved that a feedback control policy for the original control problem defined by using an optimal feedback policy for the limit problem is asymptotically optimal. Our work extends existing results of the literature in the following two directions: the underlying MDP is defined on general state and action spaces and we do not impose strong conditions on the recurrence structure of the MDP such as Doeblin's condition.
Resumo:
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.
Resumo:
Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.