971 resultados para Market capture, queuing, ant colony optimization
Resumo:
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.
Resumo:
The ability to discriminate against competitors shapes cooperation and conflicts in all forms of social life. In insect societies, workers may detect and destroy eggs laid by other workers or by foreign queens, which can contribute to regulate reproductive conflicts among workers and queens. Variation in colony kin structure affects the magnitude of these conflicts and the diversity of cues used for discrimination, but the impact of the number of queens per colony on the ability of workers to discriminate between eggs of diverse origin has so far not been investigated. Here, we examined whether workers from the socially polymorphic ant Formica selysi distinguished eggs laid by nestmate workers from eggs laid by nestmate queens, as well as eggs laid by foreign queens from eggs laid by nestmate queens. Workers from single- and multiple-queen colonies discriminated worker-laid from queen-laid eggs, and eliminated the former. This suggests that workers collectively police each other in order to limit the colony-level costs of worker reproduction and not because of relatedness differences towards queens' and workers' sons. Workers from single-queen colonies discriminated eggs laid by foreign queens of the same social structure from eggs laid by nestmate queens. In contrast, workers from multiple-queen colonies did not make this distinction, possibly because cues on workers or eggs are more diverse. Overall, these data indicate that the ability of F. selysi workers to discriminate eggs is sufficient to restrain worker reproduction but does not permit discrimination between matrilines in multiple-queen colonies.
Resumo:
Division of labor is central to the organization of insect societies. Within-colony comparisons between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division of labor in many social insect species. Although this has been taken as evidence for additive genetic effects on division of labor, it has never been experimentally tested. To determine the relative roles of additive and nonadditive genetic effects (e.g., genetic compatibility, epistasis, and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency to collect pupae, the foraging propensity, and the distance between non-brood-tenders and brood) were affected by the maternal genetic background and the two others (the efficiency to feed larvae and the distance between brood-tenders and brood) by the paternal genetic background. Moreover, there were significant interactions between the maternal and paternal genetic backgrounds for three of the five behaviors. These results are most consistent with parent-of-origin and genetic compatibility effects on division of labor. The finding of nonadditive genetic effects is in strong contrast with the current view and has important consequences for our understanding of division of labor in insect societies.
Resumo:
Social organisation of colonies was examined in the ant Formica cinerea by estimating the coefficient of genetic relatedness among worker nest mates. The estimates based on microsatellite genotypes at three loci ranged from values close to zero to 0.61 across the populations studied in Finland. These results showed that a fundamental feature of colonies, the number of reproductive queens, varied greatly among the populations. Colonies in some populations had a single queen, whereas the nests could have a high number number of queens in other populations. There was a weak but non-significant correlation between the genetic and metric distance of nests within two populations with intermediate level of relatedness. Differentiation among nearby populations (within the dispersal distance of individuals) in one locality indicated limited dispersal or founder effects. This could occur when females are philopatric and stay in the natal polygynous colony which expands by building a network of nest galleries within a single habitat patch.
Resumo:
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move fi eely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests.
Resumo:
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h(2)=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.
Resumo:
Floor cleaning is a typical robot application. There are several mobile robots aviable in the market for domestic applications most of them with random path-planning algorithms. In this paper we study the cleaning coverage performances of a random path-planning mobile robot and propose an optimized control algorithm, some methods to estimate the are of the room, the evolution of the cleaning and the time needed for complete coverage.
Resumo:
To investigate the influence of the number of queens per colony on nestmate recognition in Iridomyrmex humilis, comparative assays were performed to study the attraction of workers to queens. These assays demonstrated that a phenomenon of recognition is superimposed on the attraction of workers to queens. Workers could discriminate non-nestmate queens from their nestmate queen to which they were significantly more attracted. This discrimination is probably based on the learning by workers of queen and colony odour. The level of attraction of workers to non-nestmate queens was similar in monogynous and polygynous colonies, whereas the level of attraction of workers to nestmate queens was significantly lower in polygynous colonies. This difference in the level of attraction of workers to nestmate queens almost certainly resulted from a lower efficiency in nestmate recognition in polygynous colonies. It is hypothesized that the mixture of several pheromonal sources produced by less related individuals in polygynous colonies may result in a less distinct colony odour than in monogynous colonies. The results are discussed with regard to some implications of polygyny and particularly to the loss of intercolonial aggression in I. humilis as well as in other polygynous ant species
Resumo:
Field censuses and laboratory experiments show that in the Argentine ant, Iridomyrmex humilis (Mayr), c. 90% of the queens are executed by workers in May, at the beginning of the reproductive season. The reduction in the number of queens probably decreases the inhibition exerted by queens on the differentiation of sexuals and thus allows the production of new queens and males shortly thereafter. In the laboratory, there was no correlation between the percentage of queens executed and their weight or fecundity. At the time of execution of queens, nearly all queens were of the same age; less than 1 year. Therefore it is not likely that the age of queens plays any role in the choice that workers make in the queens they executed. Execution of these queens results in a heavy energetic cost for the colony which amounts c. 8% of the total biomass. This behaviour of workers executing nestmate queens is discussed with regard to possible evolutionary significance at the queen and worker level.
Resumo:
Formica lugubris and E paralugubris are sympatric sibling species of wood ants, both of which are widely distributed in Switzerland. Until 1996 they were considered the same species, E lugubris. To investigate whether the two species can be distinguished based on discrimination cues used by the workers we used the pupa-carrying test first introduced by Rainer Rosengren. In this test workers of discriminator colonies are faced with two kinds of pupae and their preferences for one of the types are recorded based on differential retrieval. Interspecific comparisons showed that ants preferred conspecific worker pupae to those of the sibling species regardless whether the pupae were con-colonial or hetero-colonial. Hence, this test can be used as a taxonomic tool to identify wood ants hardly distinguishable by morphological characters. In intraspecific comparisons the highly polygynous (many queens per colony) E paralugubris, the polygynous form of E lugubris and the monogynous (single queen per nest) to weakly polygynous form of E lugubris expressed different trends in their preference behaviour (with nestmate recognition in 14%, 20% and 31% of replicates, respectively). Only F paralugubris presented no significant nestmate recognition.
Resumo:
A hallmark of behavior is that animals respond to environmental change by switching from one behavioral state to another. However, information on the molecular underpinnings of these behavioral shifts and how they are mediated by the environment is lacking. The ant Pheidole pallidula with its morphologically and behaviorally distinct major and minor workers is an ideal system to investigate behavioral shifts. The physically larger majors are predisposed to defend the ant nest, whereas the smaller minors are the foragers. Despite this predisposition, majors are able to shift to foraging according to the needs of the colony. We show that the ant foraging (ppfor) gene, which encodes a cGMP-dependent protein kinase (PKG), mediates this shift. Majors have higher brain PKG activities than minors, and the spatial distribution of the PPFOR protein differs in these workers. Specifically, majors express the PPFOR protein in 5 cells in the anterior face of the ant brain, whereas minors do not. Environmental manipulations show that PKG is lower in the presence of a foraging stimulus and higher when defense is required. Finally, pharmacological activation of PKG increases defense and reduces foraging behavior. Thus, PKG signaling plays a critical role in P. pallidula behavioral shifts.
Resumo:
Social organisms vary greatly in the number of breeders per group; yet, the causes and consequences of this variation remain poorly known. Here, we show that variation in social structure is tightly linked with changes in several fundamental life-history traits within one population of ants. Multiple-queen colonies of Formica selysi were much more populous than single-queen ones. They also occurred in areas of higher nest density, had longer colony lifespan, produced smaller queens that presumably disperse less, and invested less in reproductive individuals relative to workers. These multiple changes in life histories are consistent with a shift in the mode of colony foundation and the degree of philopatry of queens. They may also provide various fitness benefits to members of multiple-queen colonies and are likely to play a central role in the evolution and maintenance of polymorphic social structures.
Resumo:
The glandular system is crucially involved in main aspects of ant social life. The function of glands has been primarily studied in the workers (the non-reproductive individuals in a colony). In contrast, little information is available on queens (the reproductive females in a colony) or males in spite of the obvious functional differences between these castes. Here we report a comparison of the general morphology of the mandibular, propharyngeal and postpharyngeal glands between the three castes of the black ant Lasius niger. The analysis clearly shows that all these cephalic glands differ in relative size between castes and suggests a link between gland structure and its behavioral role in queens, workers and males. In particular, males present a hypertrophied mandibular gland. This is consistent with the fact that these glands might be the source of the sex pheromone in this caste. By contrast, queens exhibited the most developed postpharyngeal glands. This is consistent with the production of particular cues by queens for workers to help them to distinguish between reproductive and non-reproductive females. Finally, the propharyngeal glands were most developed in the worker caste and of similar relative size in males and queens. Their function is still enigmatic.
Resumo:
The paper presents a new model based on the basic Maximum Capture model,MAXCAP. The New Chance Constrained Maximum Capture modelintroduces astochastic threshold constraint, which recognises the fact that a facilitycan be open only if a minimum level of demand is captured. A metaheuristicbased on MAX MIN ANT system and TABU search procedure is presented tosolve the model. This is the first time that the MAX MIN ANT system isadapted to solve a location problem. Computational experience and anapplication to 55 node network are also presented.
Resumo:
Identifying species exhibiting variation in social organization is an important step towards explaining the genetic and environmental factors underlying social evolution. In most studied populations of the ant Leptothorax acervorum, reproduction is shared among queens in multiple queen colonies (polygyny). By contrast, reports from other populations, but based on weaker evidence, suggest a single queen may monopolize all reproduction in multiple queen colonies (functional monogyny). Here we identify a marked polymorphism in social organization in this species, by conclusively showing that functional monogyny is exhibited in a Spanish population, showing that the social organization is stable and not purely a consequence of daughter queens overwintering, that daughter queen re-adoption is frequent and queen turnover is low. Importantly, we show that polygynous and functionally monogynous populations are not genetically distinct from one another based on mtDNA and nDNA. This suggests a recent evolutionary divergence between social phenotypes. Finally, when functionally monogynous and polygynous colonies were kept under identical laboratory conditions, social organization did not change, suggesting a genetic basis for the polymorphism. We discuss the implications of these findings to the study of reproductive skew.