802 resultados para Mammary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The function of naturally existing internal mammary (IMA)-to-coronary artery bypasses and their quantitative effect on myocardial ischemia are unknown. METHODS AND RESULTS The primary end point of this study was collateral flow index (CFI) obtained during two 1-minute coronary artery balloon occlusions, the first with and the second without simultaneous distal IMA occlusion. The secondary study end point was the quantitatively determined intracoronary ECG ST-segment elevation. CFI is the ratio of simultaneously recorded mean coronary occlusive pressure divided by mean aortic pressure both subtracted by mean central venous pressure. A total of 180 pairs of CFI measurements were performed among 120 patients. With and without IMA occlusion, CFI was 0.110±0.074 and 0.096±0.072, respectively (P<0.0001). The difference of CFI obtained in the presence minus CFI obtained in the absence of IMA occlusion was highest and most consistently positive during left IMA with left anterior descending artery occlusion and during right IMA with right coronary artery occlusion (ipsilateral occlusions): 0.033±0.044 and 0.025±0.027, respectively. This CFI difference was absent during right IMA with left anterior descending artery occlusion and during left IMA with right coronary artery occlusion (contralateral occlusions): -0.007±0.034 and 0.001±0.023, respectively (P=0.0002 versus ipsilateral occlusions). The respective CFI differences during either IMA with left circumflex artery occlusion were inconsistently positive. Intracoronary ECG ST-segment elevations were significantly reduced during ipsilateral IMA occlusions but not during contralateral or left circumflex artery occlusions. CONCLUSION There is a functional, ischemia-reducing extracardiac coronary artery supply via ipsilateral but not via contralateral natural IMA bypasses. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCTO1676207.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of ketone bodies occurs frequently after parturition during negative energy balance in high yielding dairy cows. Previous studies illustrated that hyperketonemia interferes with metabolism and it is assumed that it impairs the immune response. However, a causative effect of ketone bodies could not be shown in vivo before, because spontaneous hyperketonemia comes usually along with high NEFA and low glucose concentrations. The objective was to study effects of beta-hydroxybutyrate (BHBA) infusion and an additional intramammary lipopolysaccharide (LPS) challenge on metabolism and immune response in dairy cows. Thirteen dairy cows received intravenously either a BHBA infusion (group BHBA, n=5) to induce hyperketonemia (1.7 mmol/L), or an infusion with a 0.9 % saline solution (Control, n=8) for 56 h. Infusions started at 0900 on day 1 and continue up to 1700 two days later. Two udder quarters were challenged with 200 μg Escherichia coli-LPS 48 h after the start of infusion. Blood samples were taken one week and 2 h before the start of infusions as reference samples and hourly during the infusion. Liver and mammary gland biopsies were taken one week before the start of the infusion, 48 h after the start of the infusion, and mammary tissues was additionally taken 8 h after LPS challenge (56 h after the start of infusions). Rectal temperature (RT) and somatic cell count (SCC) was measured before and 48 h after the start of infusions and hourly during LPS challenge. Blood samples were analyzed for plasma glucose, BHBA, NEFA, triglyceride, urea, insulin, glucagon, and cortisol concentration. The mRNA abundance of factors related to potential adaptations of metabolism and immune system was measured in liver and mammary tissue biopsies. Differences between blood constituents, RT, SCC, and mRNA abundance before and 48 h after the start of infusions, and differences between mRNA abundance before and after LPS challenges were tested for significance by GLM of SAS procedure with treatment as fixed effect. Area under the curve was calculated for blood variables during 48 h BHBA infusion and during the LPS challenge, and additionally for RT and SCC during the LPS challenge. Most surprisingly, both plasma glucose and glucagon concentration decreased during the 48 h of BHBA infusion (P<0.05). During the 48 h of BHBA infusion, serum amyloid A mRNA abundance in mammary gland was increased (P<0.01), and haptoglobin (Hp) mRNA abundance tended to increase in cows treated with BHBA compared to control group (P= 0.07). RT, SCC, and candidate genes related to immune response in the liver were not affected by BHBA infusion. However, during LPS challenge the expected increase of both plasma glucose and glucagon concentration was much less pronounced in the animals treated with BHBA (P<0.05) and also SCC increased much less pronounced in the animals infused with BHBA (P<0.05) than in the controls. An increased BHBA infusion rate to maintain plasma BHBA constant could not fully compensate for the decreased plasma BHBA during the LPS challenge which indicates that BHBA is used as an energy source during the immune response. In addition, BHBA infused animals showed a more pronounced increase of mRNA abundance of IL-8, IL-10, and citrate synthase in the mammary tissue of LPS challenged quarters (P<0.05) than control animals. Results demonstrate that infusion of BHBA affects metabolism through decreased plasma glucose concentration which is likely related to a decreased release of glucagon during hyperketonemia and during additional inflammation. It also affects the systemic and mammary immune response which may reflect the increased susceptibility for mastitis during spontaneous hyperketonemia. The obviously reduced gluconeogenesis in response to BHBA infusion may be a mechanism to stimulated the use of BHBA as an energy source instead of glucose, and/or to save oxaloacetate for the citric acid cycle instead of gluconeogenesis and as a consequence to reduce ketogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of small ruminants to the dairy industry has increased in recent years, especially in developing countries, where it has a high economic and social impact. Interestingly and despite the fact that the mammary gland is the specialised milk production organ, very few authors studied the modifications occurring in the mammary gland through the lactation period in production animals, particularly in the small ruminants, sheep (Ovis aries) and goat (Capra hircus). Nevertheless, understanding the different mammary gland patterns throughout lactation is essential to improve dairy production. In addition, associating these patterns with different milking frequencies, lactation number or different diets is also of high importance, directly affecting the dairy industry. The mammary gland is commonly composed of parenchyma and stroma, which includes the ductal system, with individual proportions of each changing during the different periods and yields in a lactation cycle. Indeed, during late gestation, as well as during early to mid-lactation, mammary gland expansion occurs, with an increase in the number of epithelial cells and lumen area, which leads to increment of the parenchyma tissue, as well as a reduction of stroma, corresponding macroscopically to the increase in mammary gland volume. Throughout late lactation, the mammary gland volume decreases owing to the regression of the secretory structure. In general, common mammary gland patterns have been shown for both goats and sheep throughout the several lactation stages, although the number of studies is limited. The main objective of this manuscript is to review the colostrogenesis and lactogenesis processes as well as to highlight the mammary gland morphological patterns underlying milk production during the lactation cycle for small ruminants, and to describe potential differences between goats and sheep, hence contributing to a better description of mammary gland development during lactation for these two poorly studied species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The length of the dry period in commercial dairy production is under close scrutiny. While the main concern is the composition and volume of milk produced, the evaluation of colostrum quality under these new paradigms has suggested a decline in IgG concentrations, while some reports indicate no change. Colostrum quality has been defined as an adequate concentration (>50 mg/ml) of immunoglobulin in the secretions to provide the newborn with maximal disease resistance. We investigated the appearance of IgG in mammary pre- and post partum secretions in cows without a dry period (continuously milked, Dry0) and compared the secretions with cows that experienced a dry period of 60 d (Dry60). Blood was collected during the experimental period and plasma analysed for progesterone (P4) and prolactin (Prl). Approximately -6 d relative to parturition, the Dry0 animals exhibited increased concentration of IgG in their secretions to an average of ∼35 mg/ml that remained rather constant through subsequent pregnancy and following parturition. Dry0 cows were producing an average IgG concentration in parturition colostrum of 44·2±17·6 mg/ml that was not different than that of controls (66·86±16·8 mg/ml). However, Dry0 cows exhibited high variation, different peak times (day) of IgG concentration including times that occurred both pre and post parturition. IgG mass of the Dry0 cows remained rather constant pre- and post partum and did not show the same declining mass following parturition that was shown for the Dry60 cows. The change in plasma P4 and Prl were shown to have no timing effect on colostrum IgG concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate effects of intramammary administration of prednisolone on the immune response of mammary glands in cows. ANIMALS: 5 lactating Red Holsteins. PROCEDURES: Cows received a different intramammary infusion in each mammary gland (10 mg of prednisolone, 100 μg of lipopolysaccharide [LPS], 100 μg of LPS and 10 mg of prednisolone, or saline [0.9% NaCl] solution). Milk samples were collected before (time 0) and 3, 6, 9, 12, 24, and 36 hours after treatment. Somatic cell count (SCC), lactate dehydrogenase (LDH) activity, and concentrations of serum albumin (SA) and tumor necrosis factor (TNF)-α in milk and mRNA expression of TNF-α, interleukin (IL)-8, and IL-1β in milk somatic cells were analyzed. RESULTS: Saline solution or prednisolone did not change SCC, LDH activity, and SA and TNF-α concentrations in milk and mRNA expression of TNF-α, IL-1β, and IL-8 in milk somatic cells. The SCC and TNF-α concentration in milk increased similarly in glands infused with LPS, independent of prednisolone administration. However, the increase of LDH activity and SA concentration in milk after LPS infusion was diminished by prednisolone administration. The mRNA expression of TNF-α, IL-8, and IL-1β in milk somatic cells increased after LPS infusion and was unaffected by prednisolone. CONCLUSIONS AND CLINICAL RELEVANCE: Intramammary administration of prednisolone did not induce an immune response and did not change mRNA expression of TNF-α, IL-8, and L-1β during the response to intramammary administration of LPS. However, prednisolone reduced disruption of the blood-milk barrier. This could influence the severity and cure rate of mastitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a major mastitis-causing pathogen in dairy cows. The latex agglutination-based Staphaurex test allows bovine S. aureus strains to be grouped into Staphaurex latex agglutination test (SLAT)-negative [SLAT(-)] and SLAT-positive [SLAT(+)] isolates. Virulence and resistance gene profiles within SLAT(-) isolates are highly similar, but differ largely from those of SLAT(+) isolates. Notably, specific genetic changes in important virulence factors were detected in SLAT(-) isolates. Based on the molecular data, it is assumed that SLAT(+) strains are more virulent than SLAT(-) strains. The objective of this study was to investigate if SLAT(-) and SLAT(+) strains can differentially induce an immune response with regard to their adhesive capacity to epithelial cells in the mammary gland and in turn, could play a role in the course of mastitis. Primary bovine mammary epithelial cells (bMEC) were challenged with suspensions of heat inactivated SLAT(+) (n = 3) and SLAT(-) (n = 3) strains isolated from clinical bovine mastitis cases. After 1, 6, and 24 h, cells were harvested and mRNA expression of inflammatory mediators (TNF-α, IL-1β, IL-8, RANTES, SAA, lactoferrin, GM-CSF, COX-2, and TLR-2) was evaluated by reverse transcription and quantitative PCR. Transcription (ΔΔCT) of most measured factors was induced in challenged bMEC for 6 and 24 h. Interestingly, relative mRNA levels were higher (P<0.05) in response to SLAT(+) compared to SLAT(-) strains. In addition, adhesion assays on bMEC also showed significant differences between SLAT(+) and SLAT(-) strains. The present study clearly shows that these two S. aureus strain types cause a differential immune response of bMEC and exhibit differences in their adhesion capacity in vitro. This could reflect differences in the severity of mastitis that the different strain types may induce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic adaptations during negative energy and nutrient balance in dairy cows are thought to cause impaired immune function and hence increased risk of infectious diseases, including mastitis. Characteristic adaptations mostly occurring in early lactation are an elevation of plasma ketone bodies and free fatty acids (nonesterified fatty acids, NEFA) and diminished glucose concentration. The aim of this study was to investigate effects of elevated plasma β-hydroxybutyrate (BHBA) at simultaneously even or positive energy balance and thus normal plasma NEFA and glucose on factors related to the immune system in liver and mammary gland of dairy cows. In addition, we investigated the effect of elevated plasma BHBA and intramammary lipopolysaccharide (LPS) challenge on the mammary immune response. Thirteen dairy cows were infused either with BHBA (HyperB, n=5) to induce hyperketonemia (1.7 mmol/L) or with a 0.9% saline solution (NaCl, n=8) for 56 h. Two udder quarters were injected with 200 μg of LPS after 48 h of infusion. Rectal temperature (RT) and somatic cell counts (SCC) were measured before, at 48 h after the start of infusions, and hourly during the LPS challenge. The mRNA abundance of factors related to the immune system was measured in hepatic and mammary tissue biopsies 1 wk before and 48 h after the start of the infusion, and additionally in mammary tissue at 56 h of infusion (8h after LPS administration). At 48 h of infusion in HyperB, the mRNA abundance of serum amyloid A (SAA) in the mammary gland was increased and that of haptoglobin (Hp) tended to be increased. Rectal temperature, SCC, and mRNA abundance of candidate genes in the liver were not affected by the BHBA infusion until 48 h. During the following LPS challenge, RT and SCC increased in both groups. However, SCC increased less in HyperB than in NaCl. Quarters infused with LPS showed a more pronounced increase of mRNA abundance of IL-8 and IL-10 in HyperB than in NaCl. The results demonstrate that an increase of plasma BHBA upregulates acute phase proteins in the mammary gland. In response to intramammary LPS challenge, elevated BHBA diminishes the influx of leukocytes from blood into milk, perhaps by via modified cytokine synthesis. Results indicate that increased ketone body plasma concentrations may play a crucial role in the higher mastitis susceptibility in early lactation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this. Cancer Res; 75(4); 732-41. ©2014 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Context: Mammary and placental 17β-hydroxysteroid dehydrogenase type 1 (17βHSD1). Objective: To assess the impact of testosterone, tibolone, and black cohosh on purified mammary and placental 17βHSD1. Materials and methods: 17βHSD1 was purified from human mammary gland and placenta by column chromatography, its activity was monitored by a radioactive activity assay, and the degree of purification was determined by gel electrophoresis. Photometric cofactor transformation analysis was performed to assess 17βHSD1 activity without or in presence of testosterone, tibolone and black cohosh. Results: 17βHSD1 from both sources displayed a comparable basal activity. Testosterone and tibolone metabolites inhibited purified mammary and placental 17βHSD1 activity to a different extent, whereas black cohosh had no impact. Discussion: Studies on purified enzymes reveal the individual action of drugs on local regulatory mechanisms thus helping to develop more targeted therapeutic intervention. Conclusion: Testosterone, tibolone and black cohosh display a beneficial effect on local mammary estrogen metabolism by not affecting or decreasing local estradiol exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Docetaxel is one of the most frequently used drugs to treat breast cancer. However, resistance or incomplete response to docetaxel is a major challenge. The aim of this study was to utilize MR metabolomics to identify potential biomarkers of docetaxel resistance in a mouse model for BRCA1-mutated breast cancer. METHODOLOGY High resolution magic angle spinning (HRMAS) (1)H MR spectroscopy was performed on tissue samples obtained from docetaxel-sensitive or -resistant BRCA1-mutated mammary tumors in mice. Measurements were performed on samples obtained before treatment and at 1-2, 3-5 and 6-7 days after a 25 mg/kg dose of docetaxel. The MR spectra were analyzed by multivariate analysis, followed by analysis of the signals of individual compounds by peak fitting and integration with normalization to the integral of the creatine signal and of all signals between 2.9 and 3.6 ppm. RESULTS The HRMAS spectra revealed significant metabolic differences between sensitive and resistant tissue samples. In particular choline metabolites were higher in resistant tumors by more than 50% with respect to creatine and by more than 30% with respect to all signals between 2.9 and 3.6 ppm. Shortly after treatment (1-2 days) the normalized choline metabolite levels were significantly increased by more than 30% in the sensitive group coinciding with the time of highest apoptotic activity induced by docetaxel. Thereafter, choline metabolites in these tumors returned towards pre-treatment levels. No change in choline compounds was observed in the resistant tumors over the whole time of investigation. CONCLUSIONS Relative tissue concentrations of choline compounds are higher in docetaxel resistant than in sensitive BRCA1-mutated mouse mammary tumors, but in the first days after docetaxel treatment only in the sensitive tumors an increase of these compounds is observed. Thus both pre- and post-treatment tissue levels of choline compounds have potential to predict response to docetaxel treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein-Friesian (bMECCH) cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40) large T-antigen (MAC-T) for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK) 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA). RESULTS The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin), myoepithelial (α-SMA) and glandular secretory cells (CKs) showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05) in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry) of CK7 and CK19 protein was lower (P < 0.05) in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T). The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable degree epithelial and mesenchymal features. Thus, based on their characterization with widely used cell markers, none of these cultures represent an unequivocal alveolar mammary epithelial cell model. For choosing the appropriate in vitro model additional properties such as the expression profile of specific proteins of interest (e.g., transporter proteins) should equally be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^