794 resultados para Magic tricks
Resumo:
Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is one of the most fascinating patterning phenomena in biology. Numerous theoretical models, that are based on biochemical, biophysical and other principles, have been proposed to explain the development of the patterns. Recently, auxin has been identified as the inducer of organ formation. An emerging model for phyllotaxis states that polar auxin transport in the plant apex generates local peaks in auxin concentration that determine the site of organ formation and thereby the different phyllotactic patterns found in nature. The PIN proteins play a primary role in auxin transport. These proteins are localized in a polar fashion, reflecting the directionality of polar auxin transport. Recent evidence shows that most aspects of phyllotaxis can be explained by the expression pattern and the dynamic subcellular localization of PIN1.
Resumo:
Hermann Pick
Resumo:
Leipzig, Univ., Diss., 1897
Resumo:
Augmented reality (AR) commonly uses markers for detection and tracking. Such multimedia applications associate each marker with a virtual 3D model stored in the memory of the camera-equipped device running the application. Application users are limited in their interactions, which require knowing how to design and program 3D objects. This generally prevents them from developing their own entertainment AR applications. The Magic Cards application solves this problem by offering an easy way to create and manage an unlimited number of virtual objects that are encoded on special markers.
Resumo:
This paper employs a 3D hp self-adaptive grid-refinement finite element strategy for the solution of a particular electromagnetic waveguide structure known as Magic-T. This structure is utilized as a power divider/combiner in communication systems as well as in other applications. It often incorporates dielectrics, metallic screws, round corners, and so on, which may facilitate its construction or improve its design, but significantly difficult its modeling when employing semi-analytical techniques. The hp-adaptive finite element method enables accurate modeling of a Magic-T structure even in the presence of these undesired materials/geometries. Numerical results demonstrate the suitability of the hp-adaptive method for modeling a Magic-T rectangular waveguide structure, delivering errors below 0.5% with a limited number of unknowns. Solutions of waveguide problems delivered by the self-adaptive hp-FEM are comparable to those obtained with semi-analytical techniques such as the Mode Matching method, for problems where the latest methods can be applied. At the same time, the hp-adaptive FEM enables accurate modeling of more complex waveguide structures.
Resumo:
Following recent accounting and ethical scandals within the Telecom Industry like Gowex case, old cards are laid on the table: what kind of management and control are we doing on our businesses and what use do we give to the specific tools we have at our disposition? There are indicators, that on a very specific, concise and accurate manner, aside from brief, allow us to analyze and capture the complexity of a business and also they constitute an important support when making optimal decisions. These instruments or indicators show, a priori, all relevant data from a purely economic perspective, while there also exist, the possibility of including factors that are not of this nature strictly. For instance, there are indicators that take into account the customer?s satisfaction, the corporate reputation among others. Both kind of performance indicators form, together, an integral dashboard while the pure economic side of it could be considered as a basic dashboard. Based on DuPont?s methodology, we will be able to calculate the ROI (Return on Investment) of a company from the disaggregation of very useful and much needed indicators like the ROE (Return on Equity) or the ROA (Return on Assets); thereby, we will be able to get to know, to control and, hence, to optimize the company?s leverage level, its liquidity ratio or its solvency ratio, among others; as well as the yield we will be able to obtain if our decisions and management are optimal related to the bodies of assets. Bear in mind and make the most of the abovementioned management tools and indicators that we have at our disposition, allow us to act knowing our path and taking full responsibility, as well as, to obtain the maximum planned benefits, instead of leaving them to be casual. We will be able to avoid errors that can lead the company to an unfortunate and non-desirable situation and, of course, we will detect, way in advance, the actual needs of the business in terms of accounting and financial sanitation before irreversible situations are reached.
Resumo:
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.
Resumo:
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
Resumo:
Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimating urban populations. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy, performing inter-calibration, and defining the minimum detectable brightness would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. A first estimate of the minimum detectable brightness is presented based on the field experiments conducted. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9km. A method for in situ radiance calibration of the DMSP OLS using a ground based light source as an active target is presented. The wattage of light used by the active target strongly correlates with the signal measured by the DMSP OLS. This approach can be used to enhance our ability to make inter-temporal and inter-satellite comparisons of DMSP OLS imagery. Exploring the possibility of establishing a permanent active target for the calibration of nocturnal imaging systems is recommended. The methods used to assess the minimum detectable brightness, assess the geolocation accuracy, and build inter-calibration models lay the ground work for assessing the energy expended on light emitted into the sky at night. An estimate of the total energy consumed to light the night sky globally is presented.
Resumo:
Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≥ 100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6º from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2_(stat) ± 0.2_(syst) between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≤ 1 − 2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≤ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B_(0), that depend on the CR distribution. For α = 2.2, B_(0) ≥ 5 − 8 µG, which is below the ∼25 µG inferred from Faraday rotation measurements, whereas for α ≤ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.