947 resultados para MEAN-FIELD MODELS
Resumo:
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.
Resumo:
In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).
Resumo:
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performace of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made.
Resumo:
We construct a two-scale mathematical model for modern, high-rate LiFePO4cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.
Resumo:
A lattice formahsm using "spin variables" is employed to analyse multi-state models for the adsorption of neutral dipoles.In particular, a spin-1/2 (two-state) model incorporating permanent and reduced dipole moments of the solvent and the organic adsorbate,substrate interactions, and &screteness of charge effects is analysed The resulting Generalized Islng Hamaltonian is solved under mean field approximation (MFA) in order to derive the adsorption isotherm for organic molecules A few spin-1 (three-state) models are also analysed under MFA to describe the competitive adsorption of multi-state solvent and organic dipoles, and the appropriate equilibrium relations are derived The unification and isomorphism existing at the Hamlltonlan level for several diverse realizations, such as adsorption of ions and solvent/orgamc molecules, is indicated The possibility of analysing phase transitions using this generalized approach is briefly indicated.
Resumo:
After briefly discussing the question of a distinct mixed valent state and theoretical models for it, the area of greatest theoretical success, namely the mixed valent impurity, is reviewed. Applications to spectroscopy, energetics and Hall effect are then putlined. The independent impurity approximation is inadequate for many properties of the bulk system, which depend on lattice coherence. A recent auxiliary or slave boson approach with a simple mean field limit and fluctuation corrections is summarized. Finally the mixed valent semiconductor is discussed as an outstanding problem.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
Resumo:
Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age-old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucual role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large-scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean-field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some of the current issues of the solar simulations are put forward.
Resumo:
We present an explicit solution of the problem of two coupled spin-1/2 impurities, interacting with a band of conduction electrons. We obtain an exact effective bosonized Hamiltonian, which is then treated by two different methods (low-energy theory and mean-field approach). Scale invariance is explicitly shown at the quantum critical point. The staggered susceptibility behaves like ln(T(K)/T) at low T, whereas the magnetic susceptibility and [S1.S2] are well behaved at the transition. The divergence of C(T)/T when approaching the transition point is also studied. The non-Fermi-liquid (actually marginal-Fermi-liquid) critical point is shown to arise because of the existence of anomalous correlations, which lead to degeneracies between bosonic and fermionic states of the system. The methods developed in this paper are of interest for studying more physically relevant models, for instance, for high-T(c) cuprates.
Resumo:
We address how the nature of linearly dispersing edge states of two-dimensional (2D) topological insulators evolves with increasing electron-electron correlation engendered by a Hubbard-like on-site repulsion U in finite ribbons of two models of topological band insulators. Using an inhomogeneous cluster slave-rotor mean-field method developed here, we show that electronic correlations drive the topologically nontrivial phase into a Mott insulating phase via two different routes. In a synchronous transition, the entire ribbon attains a Mott insulating state at one critical U that depends weakly on the width of the ribbon. In the second, asynchronous route, Mott localization first occurs on the edge layers at a smaller critical value of electronic interaction, which then propagates into the bulk as U is further increased until all layers of the ribbon become Mott localized. We show that the kind of Mott transition that takes place is determined by certain properties of the linearly dispersing edge states which characterize the topological resilience to Mott localization.
Resumo:
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M(circle dot) stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f(m) of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f(m). Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.