947 resultados para Livestock production
Resumo:
The Benzylpenicillin (PENG) have been as the active ingredient in veterinary medicinal products, to increase productivity, due to its therapeutic properties. However, one of unfortunate quality and used indiscriminately, resulting in residues in foods exposed to human consumption, especially in milk that is essential to the diet of children and the ageing. Thus, it is indispensable to develop new methods able to detect this waste food, at levels that are toxic to human health, in order to contribute to the food security of consumers and collaborate with regulatory agencies in an efficient inspection. In this work, were developed methods for the quality control of veterinary drugs based on Benzylpenicillin (PENG) that are used in livestock production. Additionally, were validated methodologies for identifying and quantifying the antibiotic residues in milk bovine and caprine. For this, the analytical control was performed two steps. At first, the groups of samples of medicinal products I, II, III, IV and V, individually, were characterized by medium infrared spectroscopy (4000 – 600 cm-1). Besides, 37 samples, distributed in these groups, were analyzed by spectroscopy in the ultraviolet and near infrared region (UV VIS NIR) and Ultra Fast Liquid Chromatograph coupled to linear arrangement photodiodes (UFLC-DAD). The results of the characterization indicated similarities, between PENG and reference standard samples, primarily in regions of 1818 to 1724 cm-1 of ν C=O that shows primary amides features of PENG. The method by UFLC-DAD presented R on 0.9991. LOD of 7.384 × 10-4 μg mL-1. LOQ of 2.049 × 10-3 μg mL-1. The analysis shows that 62.16% the samples presented purity ≥ 81.21%. The method by spectroscopy in the UV VIS NIR presented medium error ≤ 8 – 12% between the reference and experimental criteria, indicating is a secure choice for rapid determination of PENG. In the second stage, was acquiring a method for the extraction and isolation of PENG by the addition of buffer McIlvaine, used for precipitation of proteins total, at pH 4.0. The results showed excellent recovery values PENG, being close to 92.05% of samples of bovine milk (method 1). While samples of milk goats (method 2) the recovery of PENG were 95.83%. The methods for UFLC-DAD have been validated in accordance with the maximum residue limit (LMR) of 4 μg Kg-1 standardized by CAC/GL16. Validation of the method 1 indicated R by 0.9975. LOD of 7.246 × 10-4 μg mL-1. LOQ de 2.196 × 10-3 μg mL-1. The application of the method 1 showed that 12% the samples presented concentration of residues of PENG > LMR. The method 2 indicated R by 0.9995. LOD 8.251 × 10-4 μg mL-1. LOQ de 2.5270 × 10-3 μg mL-1. The application of the method showed that 15% of the samples were above the tolerable. The comparative analysis between the methods pointed better validation for LCP samples, because the reduction of the matrix effect, on this account the tcalculs < ttable, caused by the increase of recovery of the PENG. In this mode, all the operations developed to deliver simplicity, speed, selectivity, reduced analysis time and reagent use and toxic solvents, particularly if compared to the established methodologies.
Resumo:
Grazing practices in rangelands are increasingly recognized as a management tool for environmental protection in addition to livestock production. Long term continuous grazing has been largely documented to reduce pasture productivity and decline the protective layer of soil surface affecting environmental protection. Time-controlled rotational grazing (TC grazing) as an alternative to continuous grazing is considered to reduce such negative effects and provides pasture with a higher amount of vegetation securing food for animals and conserving environment. To research on how the grazing system affects herbage and above ground organic materials compared with continuous grazing, the study was conducted in a sub-tropical region of Australia from 2001 to 2006. The overall results showed that herbage mass under TC grazing increased to 140% in 2006 compared with the first records taken in 2001. The outcomes were even higher (150%) when the soil is deeper and the slope is gentle. In line with the results of herbage mass, ground cover under TC grazing achieved significant higher percentages than continuous grazing in all the years of the study. Ground cover under TC grazing increased from 54% in 2003 to 73%, 82%, and 89% in 2004, 2005, and 2006, respectively, despite the fact that after the high yielding year of 2004 herbage mass declined to around 2.5 ton ha^(−1) in 2005 and 2006. Under continuous grazing however there was no significant increase over time comparable to TC grazing neither in herbage mass nor in ground cover. The successful outcome is largely attributed to the flexible nature of the management in which grazing frequency, durations and the rest periods were efficiently controlled. Such flexibility of animal presence on pastures could result in higher water retention and soil moisture condition promoting above ground organic material.
Resumo:
The competitiveness in the rural sector and the need to make viable and sustainable property, direct the farmer to seek new production strategies. In this sense, the book Techniques of sustainable agricultural management has as objective contributed information on concepts, management practices, technological innovations, which are applicable in the agricultural production. The same is composed of 13 chapters, topics covered in aquaculture production, management and dairy production, as general aspects of hematology fish; dynamics of decision-making and adaptive flow dairy production systems; importance of performance measures and body biometrics in small ruminants; milk production in beef cows; parasitism in beef cattle; performance of dairy cows in production; efficiency of cross beef cattle in finishing phase; development of Marchangus: five years; and, bovine growth efficiency. In vegetable production area are addressed matters relating on management and olive cultivation, species of great economic importance and diversification as alternative on the property; functional foods in fruit and vegetables; influence of environmental factors, harvesting and drying in the production and composition of essential oils of Mentha spp; and, implication of the contamination of corn grain by mycotoxins in livestock production. At the end of the book, the expectation of the authors is to have contributed with relevant themes of Brazilian agriculture, which could reflect positively on knowledge, values and quality of available material.
Resumo:
El estudio de los factores que rigen los patrones espaciales de la distribución del pastoreo de los herbívoros domésticos es fundamental en la ecología y el manejo de los recursos naturales. Aunque los productores y profesionales realizan ajustes anuales o estacionales de la carga animal para influir en la preferencia animal por determinados ambientes de pastoreo y alcanzar un uso eficiente del recurso forrajero, el manejo de la distribución del ganado continúa siendo un gran desafío. La heterogeneidad de los ambientes de pastoreo tiene dimensión tanto espacial como temporal, lo cual impone desafíos en el entendimiento de los factores que influyen en las decisiones de selección de hábitat por parte del ganado. En esta contribución comenzamos revisando los modelos conceptuales actuales del comportamiento del ganado a grandes escalas. Luego, presentamos algunos resultados de estudios conducidos en diferentes ecosistemas contrastantes de Argentina y New Mexico (EEUU). Estos estudios desarrollados usando animales con y sin collares GPS contribuyen a mejorar gradualmente las decisiones de manejo de los pastizales. Finalmente, hacemos unas consideraciones breves relacionadas con el manejo del ganado en Ecuador que pueden contribuir a mejorar la sustentabilidad de los sistemas de producción ganaderos.
Resumo:
En los sistemas ganaderos pastoriles, el manejo de excedentes y déficits estacionales e interanuales de forraje mediante el uso de reservas forrajeras impacta sobre la eficiencia de utilización las pasturas (manejo, productividad, y cosecha), y consecuentemente sobre el desempeño animal y productividad del sistema. En este trabajo se reporta información sobre la productividad y calidad de distintos recursos forrajeros que se utilizan para la confección de forrajes conservados. Se presenta información sobre la respuesta animal esperada para distintos momentos de confección, tipos de reservas (henos vs. Silos) para distintas categorías de animales. Se hace particular énfasis en los puntos críticos para lograr reservas de buena calidad y sobre el uso de las reservas como suplemento de pasturas, en dietas de recría y dietas engorde a corral. Finalmente se destacan algunas deficiencias nutricionales comunes en las reservas forrajeras y su modo de corrección. Aunque es bien conocido que la confección de reservas forrajeras - silos y henos - es una herramienta para la intensificación de los sistemas ganaderos que impacta sobre la productividad individual y por hectárea del sistema, hay que tener en cuenta aspectos claves para la obtención de una reserva de buena calidad y optimizar la ventajas de las reservas en el sistema como son la productividad del material a utilizar, el momento de corte, la conservación y la utilización.
Resumo:
La demanda de una producción de alimentos cada vez mayor a nivel mundial sumado a la tecnificación y al ritmo acelerado del progreso de las explotaciones agropecuarias actuales hacen que el ganado deba soportar elevadas presiones de producción aumentando los requerimientos de nutrientes. Este es el caso de los minerales considerados actualmente elementos esenciales para los animales, aunque tradicionalmente fueron definidos como los nutrientes pobres de la nutrición y alimentación animal. Actualmente se ha demostrado con evidencia clínica y productiva, el importante rol metabólico de los minerales en el animal sano y productivo, como también se ha definido qué elemento mineral y porcentaje del mismo es requerido para el normal funcionamiento del organismo. Los macro-minerales (calcio, magnesio, fósforo, sodio, potasio, cloro y azufre) y los oligo-minerales (cobre, zinc, hierro, selenio, cobalto, iodo, manganeso, molibdeno y cromo) son elementos esenciales y necesarios para transformar la proteína y la energía de los alimentos en componentes del organismo o en productos animales como leche, carne, crías, piel, lana. Además, ayudan al organismo a combatir las enfermedades, manteniendo al animal en buen estado de salud. Se ha considerado a los minerales como el tercer grupo limitante en la nutrición animal, siendo a su vez, el que mayor potencial y menor costo tiene para incrementar la producción del ganado. Los minerales desempeñan funciones tan importantes como ser constituyentes de la estructura ósea y dental, de tejidos blandos y líquidos corporales. Están involucrados en el funcionamiento celular, siendo activadores de más de trescientas enzimas, constituyentes esenciales de vitaminas, hormonas y pigmentos respiratorios y facilitando la actividad de los microorganismos del rumen. Cuando el aporte de minerales en la ración no es el adecuado en calidad y/o cantidad se originan las deficiencias minerales, encuadradas dentro de las enfermedades metabólicas o enfermedades de la producción. Estas han sido informadas en casi todo el mundo y son responsables de importantes pérdidas económicas en los rodeos de bovinos para carne. Las deficiencias y/o desequilibrios minerales pueden causar los siguientes trastornos en los animales: bajo porcentaje de parición, mayor número de servicios por concepción, abortos, retenciones placentarias, incremento del intervalo entre partos, baja producción de leche, menor peso al nacimiento y al destete, menor porcentaje de destete, menor ganancia de peso, mayor incidencia de enfermedades infecciosas, fracturas espontáneas, diarrea, deformación de huesos y mortandad. Así cobra importancia el diagnóstico mediante el análisis de la sangre de los animales, del pasto y el agua que consumen y la caracterización de estas deficiencias en primarias o secundarias con el objetivo de poder realizar un control de las mismas mediante un adecuado plan de suplementación mineral acorde a las necesidades de los distintos establecimientos agropecuarios.
Resumo:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.^
Resumo:
Accurate assessment of standing pasture biomass in livestock production systems is a major factor for improving feed planning. Several tools are available to achieve this, including the GrassMaster II capacitance meter. This tool relies on an electrical signal, which is modified by the surrounding pasture. There is limited knowledge on how this capacitance meter performs in Mediterranean pastures. Therefore, we evaluated the GrassMaster II under Mediterranean conditions to determine (i) the effect of pasture moisture content (PMC) on the meter’s ability to estimate pasture green matter (GM) and dry matter (DM) yields, and (ii) the spatial variability and temporal stability of corrected meter readings (CMR) and DM in a bio-diverse pasture. Field tests were carried out with typical pastures of the southern region of Portugal (grasses, legumes, mixture and volunteer annual species) and at different phenological stages (and different PMC). There were significant positive linear relations between CMR and GM (r2 = 0.60, P < 0.01) and CMR and DM (r2 = 0.35, P < 0.05) for all locations (n = 347). Weak relationships were found for PMC (%) v. slope and coefficient of determination for both GM and DM. A significant linear relation existed for CMR v. GM and DM for PMC >80% (r2= 0.57, P < 0.01, RMSE = 2856.7 kg ha–1, CVRMSE=17.1% to GM; and r2= 0.51, P < 0.01,RMSE = 353.7 kg ha–1, CVRMSE = 14.3% to DM). Therefore, under the conditions of this current study there exists an optimum PMC (%) for estimating both GM and DM with the GrassMaster II. Repeated-measurements taken at the same location on different dates and conditions in a bio-diverse pasture showed similar and stable patterns between CMR and DM (r2= 0.67, P < 0.01, RMSE = 136.1 kg ha–1, CVRMSE = 6.5%). The results indicate that the GrassMaster II in-situ technique could play a crucial role in assessing pasture mass to improve feed planning under Mediterranean conditions.
Resumo:
Extensive livestock production is supported by natural and biodiverse pastures, characterized by marked seasonal variation of biomass, plant species and growth stage. The use of the food resources and the occupation of grazing space can be very heterogeneous in such conditions due to ruminants grazing behaviour. Successful grazing and pasture management requires an understanding of the adjustment mechanisms behind the grazing behaviour that enables adaptation to grazing conditions. Use of GNSS technology allows a quick and effective grazing data collection which is, however expensive, limiting its application to research purposes. This paper reviews the principles for the application of GNSS technology and evaluates the use of inexpensive commercial GNSS receivers (commercial of the shelf - COTS: CatTrackTM”). Six receivers were used for six data collection period over two months of continuous grazing on a natural pasture. The measured static and dynamic accuracy of the receivers is 14m and 40m, respectively. The precision was 3m and the reliability 80%. The tested equipment allows the differentiation between animal activities (grazing, resting and transit). It also determines sheep locations, allowing the characterization of patterns, pathways and preferred areas. It is concluded that the COTS equipment has a high quality / price ratio, so it can become an important support decision tool essential to a more precise pasture management.
Modelos estocásticos de crescimento individual e desenvolvimento de software de estimação e previsão
Resumo:
Os modelos de crescimento individual são geralmente adaptações de modelos de crescimento de populações. Inicialmente estes modelos eram apenas determinísticos, isto é, não incorporavam as flutuações aleatórias do ambiente. Com o desenvolvimento da teoria do cálculo estocástico podemos adicionar um termo estocástico, que representa a aleatoriedade ambiental que influencia o processo em estudo. Actualmente, o estudo do crescimento individual em ambiente aleatório é cada vez mais importante, não apenas pela vertente financeira, mas também devido às suas aplicações nas áreas da saúde e da pecuária, entre outras. Problemas como o ajustamento de modelos de crescimento individual, estimação de parâmetros e previsão de tamanhos futuros são tratados neste trabalho. São apresentadas novas aplicações do modelo estocástico monomolecular generalizado e um novo software de aplicação deste e de outros modelos. ABSTRACT: Individual growth models are usually adaptations of growth population models. Initially these models were only deterministic, that is, they did not incorporate the random fluctuations of the environment. With the development of the theory of stochastic calculus, we can add a stochastic term that represents the random environmental influences in the process under study. Currently, the study of individual growth in a random environment is increasingly important, not only by the financial scope but also because of its applications in health care and livestock production, among others. Problems such as adjustment of an individual growth model, estimation of parameters and prediction of future sizes are treated in this work. New applications of the generalized stochastic monomolecular model and a new software applied to this and other models are presented.
Resumo:
Forage peanut improvement for use in grass?legume mixtures is expected to have a great impact on the sustainability of Brazilian livestock production. Eighteen cloned Arachis spp. ecotypes were evaluated under clipping in a Brazilian Cerrado region and results analysed using a mixed model methodology. The objective was to estimate genetic and phenotypic parameters and to select the best ecotypes based on selection index applied on their predicted genotypic value. The traits of total dry-matter (DM) and leaf DM yield presented moderate (0_30 < h2g < 0_50) to high (>0_50) broad-sense heritability, in contrast to the low genetic variability in nutritional quality-associated traits. Ecotypes of Arachis spp. contained average crude protein concentrations of 224 g kg _1 DM in leaves and 138 g kg _1 DM in stems, supporting the potential role of these species to overcome the low protein content in Cerrado pastures. The correlations between yield traits and traits associated with low nutritional value in leaves were consistently significant and positive. Genetic correlations among all the yield traits evaluated during the rainy or dry seasons were significant and positive. The ecotypes were ranked based on selection index. The next step is to validate long-term selection of grass?Arachis in combination with pastures under competition and adjusted grazing in the Cerrado region.
Resumo:
2016
Resumo:
This paper presents several combined agricultural data disaggregation models in order to recover the farms' land uses, the livestock numbers and main crops' productions. The proposed approach estimates incomplete information at disaggregated level through entropy, using an information prior, and generating information for a combined calculation use of data in the estimation of other variables. The models were applied to the region of Algarve, to some rural pilot areas (Salir-Ameixial-Cachopo and Alcoutim) for livestock data, since this data in some Algarve's inland areas is needed for a European forest fire prevention project, and to the agrarian zones in a more complex framework. The results are promising. They were validated, in cross reference to real data, having proven to be valid and reliable. The total error was small and a considerable level of information heterogeneity was recovered. The total error was about 27,9% for the counties' land uses and 21% for the agrarian zones, and for the livestock it was also acceptable. The level of heterogeneity recovered was always higher than 50%, revealing some improvements regarding previous studies.