1000 resultados para Light irradiations
Resumo:
Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold–palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using “green” oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.
Resumo:
The dissertation examines Roman provincial administration and the phenomenon of territorial reorganisations of provinces during the Imperial period with special emphasis on the provinces of Arabia and Palaestina during the Later Roman period, i.e., from Diocletian (r. 284 305) to the accession of Phocas (602), in the light of imperial decision-making. Provinces were the basic unit of Roman rule, for centuries the only level of administration that existed between the emperor and the cities of the Empire. The significance of the territorial reorganisations that the provinces were subjected to during the Imperial period is thus of special interest. The approach to the phenomenon is threefold: firstly, attention is paid to the nature and constraints of the Roman system of provincial administration. Secondly, the phenomenon of territorial reorganisations is analysed on the macro-scale, and thirdly, a case study concerning the reorganisations of the provinces of Arabia and Palaestina is conducted. The study of the mechanisms of decision-making provides a foundation through which the collected data of all known major territorial reorganisations is interpreted. The data concerning reorganisations is also subjected to qualitative comparative analysis that provides a new perspective to the data in the form of statistical analysis that is sensitive to the complexities of individual cases. This analysis of imperial decision-making is based on a timeframe stretching from Augustus (r. 30 BC AD 14) to the accession of Phocas (602). The study identifies five distinct phases in the use of territorial reorganisations of the provinces. From Diocletian s reign there is a clear normative change that made territorial reorganisations a regular tool of administration for the decision-making elite for addressing a wide variety of qualitatively different concerns. From the beginning of the fifth century the use of territorial reorganisations rapidly diminishes. The two primary reasons for the decline in the use of reorganisations were the solidification of ecclesiastical power and interests connected to the extent of provinces, and the decline of the dioceses. The case study of Palaestina and Arabia identifies seven different territorial reorganisations from Diocletian to Phocas. Their existence not only testifies to wider imperial policies, but also shows sensitivity to local conditions and corresponds with the general picture of provincial reorganisations. The territorial reorganisations of the provinces reflect the proactive control of the Roman decision-making elite. The importance of reorganisations should be recognised more clearly as part of the normal imperial administration of the provinces and especially reflecting the functioning of dioceses.
Resumo:
In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Sleepiness remains a primary cause of road crashes, the major cause of death in young adults. Light is known to produce a direct alerting effect, but little is known about its effects on sleepy drivers. This study aimed to compare the effect of blue-green light and caffeine on young drivers’ cognitive performance after chronic-partial sleep loss.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
A laboratory experiment compared germination of the invasive exotic grass Hymenachne amplexicaulis (Rudge) Nees and the native H. acutigluma (Steud.) Gilliland. Seeds of both species were exposed to combinations of light (constant dark, alternating dark/light or constant light), temperature (constant or alternating) and nitrate regimes (with or without the addition of KNO3). Three seed lots of H. amplexicaulis (fresh, two adn four months old) and one of H. acutigluma (fresh seed) were tested. A significant temperature x light x nitrate x seed lot interaction occured. At a constant temperature very few seeds of either H. amplexicaulis or H. acutigluma germinated, regardless of the light regime or addition of KNO3. Generally, maximum germination occurred under a combination of alternating temperature, the presence of light (either constant or alternating) and the addition of KNO3. The exception was four month stored H. amplexicaulis seed, which reached maximum germinaction without the need for KNO3. Fresh seed of both H. amplexicaulis and H. acutigluma exhibited similar germination requirements. These findings suggest that conditions that buffer seeds from light and/or temperature fluctuations could reduce germination and possibly extend the life of seed banks of both H. amplexicaulis and H. acutigluma. Conversely, for land managers trying to control the exotic H. amplexicaulis, activities that create more favourable conditions for germination may help deplete seed banks faster.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
Red light cameras were introduced in Victoria in August 1983, with the intention of reducing the number of accidents that result from motorists disobeying red traffic signals at signalised intersections. Accident data from 46 treated and 46 control sites from 1981 to 1986 were analysed. The analysis indicated that red light camera use resulted in a reduction in the incidence of right angle accidents, and in the number of accident casualties. Legislation was introduced in March 1986 to place the onus for red light camera offences onto the vehicle owner. This legislation was intended to improve Police efficiency and therefore increase the number of red light cameras in operation. Data supplied by the Police indicated that these aims have beneficial road safety effects.
Resumo:
EXECUTIVE SUMMARY (excerpts) The red light camera (RLC) program commenced in July 1988, with five cameras operating at 15 sites in metropolitan Adelaide. This report deals with the first eighteen months of operation, to December 1989. A number of recommendations have been made… PROGRAM EVALUATION … In 1989 dollars, the program was estimated to have achieved an accident reduction benefit of $1.4m in the first 12 months of operation, which is almost twice the benefit expected using the assumptions made when selecting the sites. (There are 8 recommendations, mostly specific to the particular program characteristics)
Resumo:
Red light cameras were introduced in August 1983 to deter run-the-red offences and therefore to reduce the incidence of right-angle accidents at signalised intersections in Melbourne. This report was prepared after two years of operation of the program. It provides a detailed account of the technical aspects of the program, but does not provide any detailed, evaluative analyses of accident data.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.