880 resultados para Legislative bodies -- New South Wales -- History
Resumo:
Mode of access: Internet.
Resumo:
The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.
Resumo:
A comprehensive introduction to the study of law. It uses historical, sociological, economic and philosophical perspectives to explore the major legal debates in Australia today. The contributors examine: the position of Aborigines in the Australian legal system and the impact of the Mabo case; divisions of power in Australian society and law; the question of objectivity in law; the relationship and social change; judicial decision-making; and other issues.
Resumo:
Have you ever wished you were Doctor Who and could pop yourself and your students into a Tardis and teleport them to an historical event or to meet a historical figure? We all know that unfortunately time travel is not (yet) possible, but maybe student and teacher teleportation just might be – sort of. Over the past few centuries and in lieu of time travel our communities have developed museums as a means of experiencing some of our history...
Resumo:
This volume continues the story of football in Marvellous Melbourne during the 1880s. At this time the VFA continued to expand as Melbourne’s boom continued apace. In 1886 Port Melbourne, Prahran, St Kilda, Footscray and South Williamstown joined the competition, and the Ballarat clubs Ballarat, Ballarat Imperial and South Ballarat were also contending for the VFA premiership. In 1886 matches were divided into four quarters, goal umpires waved two flags to announce a goal, and time clocks and bells were employed to mark the end of quarters. Victoria also played inter-colonial matches against New South Wales, Tasmania and South Australia. VFA secretary T.S. Marshall was at the forefront of fighting the game’s turn towards professionalism, but although it was illegal to pay players, the practice continued. The period 1886 to 1890 also set the stage for the eventual formation of the Victorian Football League, for by the end of the 1880s the Victorian Football Association had become in effect a two-tier competition. The most popular clubs in the VFA, South Melbourne, Geelong, Carlton and Essendon collected the lion’s share of the gate money, which they used to build their wealth and entrench their position as the dominant Victorian teams. The lower tier clubs had to make do with paltry gate money and season fixtures that advantaged the strong clubs. In these fixtures the strong clubs elected to play each other first to increase their gate money, and only deemed to play the poorer clubs at the start of the season. This led to an increasing divide between the VFA’s rich and poor, and by 1890 South Williamstown and Prahran merged with Williamstown and St Kilda respectively, University dropped out of senior ranks, and the Ballarat clubs were excluded from competing for the VFA premiership, which left 12 senior clubs until Collingwood’s emergence in 1892. At this time, no team was as powerful as South Melbourne, which experienced the greatest success in the club’s VFA and VFL history when it collected triple premiership crowns in 1888, 1889, and 1890. South Melbourne was a most ambitious club and spearheaded the move towards professionalism, although this could not be made public. The fine teams it produced at this time contained some of the greatest players of the era, such as Peter Burns, “Sonny” Elms and “Dinny” McKay, and it looked after players with health insurance, jobs, inter-colonial trips, and other incentives. Geelong’s premiership in 1886 was perhaps its greatest triumph, but this success was followed by a premiership drought that would last for 39 years. Carlton remained one of Victorian football’s power clubs, and after securing the premiership in 1887 continued to compete for top honours. As always, the game became ever more popular and world record crowds of over 30,000 attended matches between South Melbourne, Carlton, Geelong and Essendon.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
New efforts at biological control of Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes. Mikania micrantha H.B.K. (Asteraceae) in Papua New Guinea and Fiji.
Resumo:
Morphological development of the larvae and small juveniles of estuary perch (Macquaria colonorum) (17 specimens, 4.8−13.5 mm body length) and Australian bass (M. novemaculeata) (38 specimens, 3.3−14.1 mm) (Family Percichthyidae) is described from channel-net and beach-seine collections of both species, and from reared larvae of M. novemaculeata. The larvae of both are characterized by having 24−25 myomeres, a large triangular gut (54−67% of BL) in postflexion larvae, small spines on the preopercle and interopercle, a smooth supraocular ridge, a small to moderate gap between the anus and the origin of the anal fin, and distinctive pigment patterns. The two species can be distinguished most easily by the different distribution of their melanophores. The adults spawn in estuaries and larvae are presumed to remain in estuaries before migrating to adult freshwater habitat. However, larvae of both species were collected as they entered a central New South Wales estuary from the ocean on flood tides; such transport may have consequences for the dispersal of larvae among estuaries. Larval morphology and published genetic evidence supports a reconsideration of the generic arrangement of the four species currently placed in the genus Macquaria.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Published in 1834-35 under the title: History of the British colonies.
Resumo:
Mode of access: Internet.
Resumo:
Facsimile of title page. Originally published : Sydney : Turner & Henderson, 1888.
Resumo:
Illustrated by Darley and others.