901 resultados para Learning techniques
Resumo:
El análisis de textos de la Web 2.0 es un tema de investigación relevante hoy en día. Sin embargo, son muchos los problemas que se plantean a la hora de utilizar las herramientas actuales en este tipo de textos. Para ser capaces de medir estas dificultades primero necesitamos conocer los diferentes registros o grados de informalidad que podemos encontrar. Por ello, en este trabajo intentaremos caracterizar niveles de informalidad para textos en inglés en la Web 2.0 mediante técnicas de aprendizaje automático no supervisado, obteniendo resultados del 68 % en F1.
Resumo:
IARG-AnCora tiene como objetivo la anotación con papeles temáticos de los argumentos implícitos de las nominalizaciones deverbales en el corpus AnCora. Estos corpus servirán de base para los sistemas de etiquetado automático de roles semánticos basados en técnicas de aprendizaje automático. Los analizadores semánticos son componentes básicos en las aplicaciones actuales de las tecnologías del lenguaje, en las que se quiere potenciar una comprensión más profunda del texto para realizar inferencias de más alto nivel y obtener así mejoras cualitativas en los resultados.
Resumo:
In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.
Resumo:
Inspirados por las estrategias de detección precoz aplicadas en medicina, proponemos el diseño y construcción de un sistema de predicción que permita detectar los problemas de aprendizaje de los estudiantes de forma temprana. Partimos de un sistema gamificado para el aprendizaje de Lógica Computacional, del que se recolectan masivamente datos de uso y, sobre todo, resultados de aprendizaje de los estudiantes en la resolución de problemas. Todos estos datos se analizan utilizando técnicas de Machine Learning que ofrecen, como resultado, una predicción del rendimiento de cada alumno. La información se presenta semanalmente en forma de un gráfico de progresión, de fácil interpretación pero con información muy valiosa. El sistema resultante tiene un alto grado de automatización, es progresivo, ofrece resultados desde el principio del curso con predicciones cada vez más precisas, utiliza resultados de aprendizaje y no solo datos de uso, permite evaluar y hacer predicciones sobre las competencias y habilidades adquiridas y contribuye a una evaluación realmente formativa. En definitiva, permite a los profesores guiar a los estudiantes en una mejora de su rendimiento desde etapas muy tempranas, pudiendo reconducir a tiempo los posibles fracasos y motivando a los estudiantes.
Resumo:
La naturaleza de los medios y lenguajes digitales ha posibilitado el desarrollo de diferentes técnicas que, en el canon del mundo analógico, se veían limitadas. Esta combinación ha originado, en los primeros años de vida del ser humano, nuevas formas de aprender envueltas en una nueva realidad. Las técnicas de creación que adquieren los niños en espacios alejados de cualquier currículo escolar, son desarrolladas gracias a su condición de ciudadanos de un contexto de sabios digitales; condición que trae intrínseco un conocimiento en el manejo tecnológico como de manera innata, convirtiendo la narrativa digital en el medio que ellos utilizan para aprender y comunicarse. Como consecuencia, en el modelo EMEREC más individualista se abre paso una generación de creadores colaborativos otorgando, por medio de la participación infantil, una mayor potencialidad a la ley de los tres tercios.
Resumo:
L’évolution continue des besoins d’apprentissage vers plus d’efficacité et plus de personnalisation a favorisé l’émergence de nouveaux outils et dimensions dont l’objectif est de rendre l’apprentissage accessible à tout le monde et adapté aux contextes technologiques et sociaux. Cette évolution a donné naissance à ce que l’on appelle l'apprentissage social en ligne mettant l'accent sur l’interaction entre les apprenants. La considération de l’interaction a apporté de nombreux avantages pour l’apprenant, à savoir établir des connexions, échanger des expériences personnelles et bénéficier d’une assistance lui permettant d’améliorer son apprentissage. Cependant, la quantité d'informations personnelles que les apprenants divulguent parfois lors de ces interactions, mène, à des conséquences souvent désastreuses en matière de vie privée comme la cyberintimidation, le vol d’identité, etc. Malgré les préoccupations soulevées, la vie privée en tant que droit individuel représente une situation idéale, difficilement reconnaissable dans le contexte social d’aujourd’hui. En effet, on est passé d'une conceptualisation de la vie privée comme étant un noyau des données sensibles à protéger des pénétrations extérieures à une nouvelle vision centrée sur la négociation de la divulgation de ces données. L’enjeu pour les environnements sociaux d’apprentissage consiste donc à garantir un niveau maximal d’interaction pour les apprenants tout en préservant leurs vies privées. Au meilleur de nos connaissances, la plupart des innovations dans ces environnements ont porté sur l'élaboration des techniques d’interaction, sans aucune considération pour la vie privée, un élément portant nécessaire afin de créer un environnement favorable à l’apprentissage. Dans ce travail, nous proposons un cadre de vie privée que nous avons appelé « gestionnaire de vie privée». Plus précisément, ce gestionnaire se charge de gérer la protection des données personnelles et de la vie privée de l’apprenant durant ses interactions avec ses co-apprenants. En s’appuyant sur l’idée que l’interaction permet d’accéder à l’aide en ligne, nous analysons l’interaction comme une activité cognitive impliquant des facteurs contextuels, d’autres apprenants, et des aspects socio-émotionnels. L'objectif principal de cette thèse est donc de revoir les processus d’entraide entre les apprenants en mettant en oeuvre des outils nécessaires pour trouver un compromis entre l’interaction et la protection de la vie privée. ii Ceci a été effectué selon trois niveaux : le premier étant de considérer des aspects contextuels et sociaux de l’interaction telle que la confiance entre les apprenants et les émotions qui ont initié le besoin d’interagir. Le deuxième niveau de protection consiste à estimer les risques de cette divulgation et faciliter la décision de protection de la vie privée. Le troisième niveau de protection consiste à détecter toute divulgation de données personnelles en utilisant des techniques d’apprentissage machine et d’analyse sémantique.
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.
Resumo:
L’évolution continue des besoins d’apprentissage vers plus d’efficacité et plus de personnalisation a favorisé l’émergence de nouveaux outils et dimensions dont l’objectif est de rendre l’apprentissage accessible à tout le monde et adapté aux contextes technologiques et sociaux. Cette évolution a donné naissance à ce que l’on appelle l'apprentissage social en ligne mettant l'accent sur l’interaction entre les apprenants. La considération de l’interaction a apporté de nombreux avantages pour l’apprenant, à savoir établir des connexions, échanger des expériences personnelles et bénéficier d’une assistance lui permettant d’améliorer son apprentissage. Cependant, la quantité d'informations personnelles que les apprenants divulguent parfois lors de ces interactions, mène, à des conséquences souvent désastreuses en matière de vie privée comme la cyberintimidation, le vol d’identité, etc. Malgré les préoccupations soulevées, la vie privée en tant que droit individuel représente une situation idéale, difficilement reconnaissable dans le contexte social d’aujourd’hui. En effet, on est passé d'une conceptualisation de la vie privée comme étant un noyau des données sensibles à protéger des pénétrations extérieures à une nouvelle vision centrée sur la négociation de la divulgation de ces données. L’enjeu pour les environnements sociaux d’apprentissage consiste donc à garantir un niveau maximal d’interaction pour les apprenants tout en préservant leurs vies privées. Au meilleur de nos connaissances, la plupart des innovations dans ces environnements ont porté sur l'élaboration des techniques d’interaction, sans aucune considération pour la vie privée, un élément portant nécessaire afin de créer un environnement favorable à l’apprentissage. Dans ce travail, nous proposons un cadre de vie privée que nous avons appelé « gestionnaire de vie privée». Plus précisément, ce gestionnaire se charge de gérer la protection des données personnelles et de la vie privée de l’apprenant durant ses interactions avec ses co-apprenants. En s’appuyant sur l’idée que l’interaction permet d’accéder à l’aide en ligne, nous analysons l’interaction comme une activité cognitive impliquant des facteurs contextuels, d’autres apprenants, et des aspects socio-émotionnels. L'objectif principal de cette thèse est donc de revoir les processus d’entraide entre les apprenants en mettant en oeuvre des outils nécessaires pour trouver un compromis entre l’interaction et la protection de la vie privée. ii Ceci a été effectué selon trois niveaux : le premier étant de considérer des aspects contextuels et sociaux de l’interaction telle que la confiance entre les apprenants et les émotions qui ont initié le besoin d’interagir. Le deuxième niveau de protection consiste à estimer les risques de cette divulgation et faciliter la décision de protection de la vie privée. Le troisième niveau de protection consiste à détecter toute divulgation de données personnelles en utilisant des techniques d’apprentissage machine et d’analyse sémantique.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.
Resumo:
We are developing a telemedicine application which offers automated diagnosis of facial (Bell's) palsy through a Web service. We used a test data set of 43 images of facial palsy patients and 44 normal people to develop the automatic recognition algorithm. Three different image pre-processing methods were used. Machine learning techniques (support vector machine, SVM) were used to examine the difference between the two halves of the face. If there was a sufficient difference, then the SVM recognized facial palsy. Otherwise, if the halves were roughly symmetrical, the SVM classified the image as normal. It was found that the facial palsy images had a greater Hamming Distance than the normal images, indicating greater asymmetry. The median distance in the normal group was 331 (interquartile range 277-435) and the median distance in the facial palsy group was 509 (interquartile range 334-703). This difference was significant (P
Resumo:
Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.
Resumo:
Attempting to solve the complex problems of the 21st century requires research graduates that have developed a sophisticated array of interdisciplinary teamwork and communication skills. Although universities, governments, industry and the professions have emphasised the need to break down disciplinary silos in order to produce graduates, who can respond more effectively to the needs of the knowledge economy, much of this work has centred on undergraduate programs. While there are some research higher degree students who choose to work on interdisciplinary research topics, very little has been done to develop interdisciplinary research education systematically. This paper explores the educational opportunities and dilemmas involved in developing systematic programs of interdisciplinary research activities in two research centres at the University of Queensland. Framed by Bruhn's (2000, p. 58) theoretical discourse about interdisciplinary research as 'a philosophy, an art form, an artifact, and an antidote', this paper emphasises the need for such programs to embed the development of students' interdisciplinary research skills and attitudes within their research projects. The two diverse programs also emphasise experiential, active and interactive learning techniques and are centred upon the development of students' reflective practice skills.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.