1000 resultados para Lattice Points


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of distributed storage codes that allow for efficient repair of failed nodes, as compared to traditional erasure codes. An [n, k, d] regenerating code permits the data to be recovered by connecting to any k of the n nodes in the network, while requiring that a failed node be repaired by connecting to any d nodes. The amount of data downloaded for repair is typically much smaller than the size of the source data. Previous constructions of exact-regenerating codes have been confined to the case n = d + 1. In this paper, we present optimal, explicit constructions of (a) Minimum Bandwidth Regenerating (MBR) codes for all values of [n, k, d] and (b) Minimum Storage Regenerating (MSR) codes for all [n, k, d >= 2k - 2], using a new product-matrix framework. The product-matrix framework is also shown to significantly simplify system operation. To the best of our knowledge, these are the first constructions of exact-regenerating codes that allow the number n of nodes in the network, to be chosen independent of the other parameters. The paper also contains a simpler description, in the product-matrix framework, of a previously constructed MSR code with [n = d + 1, k, d >= 2k - 1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many cases, a mobile user has the option of connecting to one of several IEEE 802.11 access points (APs),each using an independent channel. User throughput in each AP is determined by the number of other users as well as the frame size and physical rate being used. We consider the scenario where users could multihome, i.e., split their traffic amongst all the available APs, based on the throughput they obtain and the price charged. Thus, they are involved in a non-cooperative game with each other. We convert the problem into a fluid model and show that under a pricing scheme, which we call the cost price mechanism, the total system throughput is maximized,i.e., the system suffers no loss of efficiency due to selfish dynamics. We also study the case where the Internet Service Provider (ISP) could charge prices greater than that of the cost price mechanism. We show that even in this case multihoming outperforms unihoming, both in terms of throughput as well as profit to the ISP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in the light of recent theory of reentrant melting of the vortex lattice by G. Blatter et al. (Phys. Rev. B 54, 72 (1996)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I (V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I (V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the diversity-multiplexing gain tradeoff (DMT) of single-source, single-sink (ss-ss), multihop relay networks having slow-fading links is studied. In particular, the two end-points of the DMT of ss-ss full-duplex networks are determined, by showing that the maximum achievable diversity gain is equal to the min-cut and that the maximum multiplexing gain is equal to the min-cut rank, the latter by using an operational connection to a deterministic network. Also included in the paper, are several results that aid in the computation of the DMT of networks operating under amplify-and-forward (AF) protocols. In particular, it is shown that the colored noise encountered in amplify-and-forward protocols can be treated as white for the purpose of DMT computation, lower bounds on the DMT of lower-triangular channel matrices are derived and the DMT of parallel MIMO channels is computed. All protocols appearing in the paper are explicit and rely only upon AF relaying. Half-duplex networks and explicit coding schemes are studied in a companion paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-shell contacts between two copper(I) ions are expected to be repulsive. However, such contacts are quite frequent and are well documented. Crystallographic characterization of such contacts in unsupported and bridged multinuclear copper(I) complexes has repeatedly invited debates on the existence of cuprophilicity. Recent developments in the application of Baders theory of atoms-in-molecules (AIM) to systems in which weak hydrogen bonds are involved suggests that the copper(I)copper(I) contacts would benefit from a similar analysis. Thus the nature of electron-density distributions in copper(I) dimers that are unsupported, and those that are bridged, have been examined. A comparison of complexes that are dimers of symmetrical monomers and those that are dimers of two copper(I) monomers with different coordination spheres has also been made. AIM analysis shows that a bond critical point (BCP) between two Cu atoms is present in most cases. The nature of the BCP in terms of the electron density, ?, and its Laplacian is quite similar to the nature of critical points observed in hydrogen bonds in the same systems. The ? is inversely correlated to Cu?Cu distance. It is higher in asymmetrical systems than what is observed in corresponding symmetrical systems. By examining the ratio of the local electron potential-energy density (Vc) to the kinetic energy density (Gc), |Vc|/Gc at the critical point suggests that these interactions are not perfectly ionic but have some shared nature. Thus an analysis of critical points by using AIM theory points to the presence of an attractive metallophilic interaction similar to other well-documented weak interactions like hydrogen bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Linear phase(LP) Finite Impulse Response(FIR) filters are widely used in many signal processing systems which are sensitive to phase distortion. In this article, we obtain a canonic lattice structure of an LP-FIR filter with a complex impulse response. This lattice structure is based on some novel lattice stages obtained from some properties of symmetric polynomials.This canonic lattice structure exploits the redundancy in the zeros of an LP-FIR filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.