918 resultados para Late-onset


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Late-onset hypogonadism (LOH) represents a common clinical entity in aging males, characterized by the presence of symptoms (most usually of a sexual nature, such as decreased libido, decreased spontaneous erections and erectile dysfunction) and signs, in combination with low serum testosterone concentrations. Whether testosterone replacement therapy (TRT) should be offered to those individuals is still under extensive debate. AIMS The aim of this position statement is to provide and critically appraise evidence on TRT in the aging male, focusing on pathophysiology and characteristics of LOH, indications for TRT, available therapeutic agents, monitoring and treatment-associated risks. MATERIALS AND METHODS Literature review and consensus of expert opinion. RESULTS AND CONCLUSIONS Diagnosis and treatment of LOH is justified, if a combination of symptoms of testosterone deficiency and low testosterone is present. Patients receiving TRT could profit with regard to obesity, metabolic syndrome, type 2 diabetes mellitus, sexual function and osteoporosis and should undergo scheduled testing for adverse events regularly. Potential adverse effects of TRT on cardiovascular disease, prostate cancer and sleep apnea are as yet unclear and remain to be investigated in large-scale prospective studies. Management of aging men with LOH should include individual evaluation of co-morbidities and careful risk versus benefit assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN Retrospective analysis of prospectively collected clinical data. OBJECTIVE To assess the long-term outcome of patients with monosegmental L4/5 degenerative spondylolisthesis treated with the dynamic Dynesys device. SUMMARY OF BACKGROUND DATA The Dynesys system has been used as a semirigid, lumbar dorsal pedicular stabilization device since 1994. Good short-term results have been reported, but little is known about the long-term outcome after treatment for degenerative spondylolisthesis at the L4/5 level. METHODS A total of 39 consecutive patients with symptomatic degenerative lumbar spondylolisthesis at the L4/5 level were treated with bilateral decompression and Dynesys instrumentation. At a mean follow-up of 7.2 years (range, 5.0-11.2 y), they underwent clinical and radiographic evaluation and quality of life assessment. RESULTS At final follow-up, back pain improved in 89% and leg pain improved in 86% of patients compared with preoperative status. Eighty-three percent of patients reported global subjective improvement. Ninety-two percent would undergo the surgery again. Eight patients (21%) required further surgery because of symptomatic adjacent segment disease (6 cases), late-onset infection (1 case), and screw breakage (1 case). In 9 cases, radiologic progression of spondylolisthesis at the operated segment was found. Seventy-four percent of operated segments showed limited flexion-extension range of <4 degrees. Adjacent segment pathology, although without clinical correlation, was diagnosed at the L5/S1 (17.9%) and L3/4 (28.2%) segments. In 4 cases, asymptomatic screw loosening was observed. CONCLUSIONS Monosegmental Dynesys instrumentation of degenerative spondylolisthesis at L4/5 shows good long-term results. The rate of secondary surgeries is comparable to other dorsal instrumentation devices. Residual range of motion in the stabilized segment is reduced, and the rate of radiologic and symptomatic adjacent segment degeneration is low. Patient satisfaction is high. Dynesys stabilization of symptomatic L4/5 degenerative spondylolisthesis is a possible alternative to other stabilization devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are two practical challenges in the phase I clinical trial conduct: lack of transparency to physicians, and the late onset toxicity. In my dissertation, Bayesian approaches are used to address these two problems in clinical trial designs. The proposed simple optimal designs cast the dose finding problem as a decision making process for dose escalation and deescalation. The proposed designs minimize the incorrect decision error rate to find the maximum tolerated dose (MTD). For the late onset toxicity problem, a Bayesian adaptive dose-finding design for drug combination is proposed. The dose-toxicity relationship is modeled using the Finney model. The unobserved delayed toxicity outcomes are treated as missing data and Bayesian data augment is employed to handle the resulting missing data. Extensive simulation studies have been conducted to examine the operating characteristics of the proposed designs and demonstrated the designs' good performances in various practical scenarios.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have isolated a dominant mutation, night blindness a (nba), that causes a slow retinal degeneration in zebrafish. Heterozygous nba fish have normal vision through 2–3 months of age but subsequently become night blind. By 9.5 months of age, visual sensitivity of affected fish may be decreased more than two log units, or 100-fold, as measured behaviorally. Electroretinographic (ERG) thresholds of mutant fish are also raised significantly, and the ERG b-wave shows a delayed implicit time. These defects are due primarily to a late-onset photoreceptor cell degeneration involving initially the rods but eventually the cones as well. Homozygous nba fish display an early-onset neuronal degeneration throughout the retina and elsewhere in the central nervous system. As a result, animals develop with small eyes and die by 4–5 days postfertilization (pf). These latter data indicate that the mutation affecting nba fish is not in a photoreceptor cell-specific gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amyloid β peptide (Aβ) is thought to play a central role in the pathogenesis of Alzheimer disease (AD). How Aβ induces neurodegeneration in AD is not known. A connection between AD and cholesterol metabolism is suggested by the finding that people with the apolipoprotein E4 allele, a locus coding for a cholesterol-transporting lipoprotein, have a modified risk for both late-onset AD and cardiovascular disease. In the present study we show that both Aβ and submicromolar concentrations of free cholesterol alter the trafficking of a population of intracellular vesicles that are involved in the transport of the reduced form of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT formazan), the formation of which is a widely used cell viability assay. Treatments that change cellular free cholesterol levels also modulate the trafficking of the MTT formazan-containing vesicles, suggesting that the trafficking of these vesicles may be regulated by free cholesterol under physiological conditions. In addition, Aβ decreases cholesterol esterification and changes the distribution of free cholesterol in neurons. These results suggest that the MTT formazan-transporting vesicles may be involved in cellular cholesterol homeostasis and that the alteration of vesicle transport by Aβ may be relevant to the chronic neurodegeneration observed in AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects upon memory of normal aging and two age-related neurodegenerative diseases, Alzheimer disease (AD) and Parkinson disease, are analyzed in terms of memory systems, specific neural networks that mediate specific mnemonic processes. An occipital memory system mediating implicit visual-perceptual memory appears to be unaffected by aging or AD. A frontal system that may mediate implicit conceptual memory is affected by AD but not by normal aging. Another frontal system that mediates aspects of working and strategic memory is affected by Parkinson disease and, to a lesser extent, by aging. The aging effect appears to occur during all ages of the adult life-span. Finally, a medial-temporal system that mediates declarative memory is affected by the late onset of AD. Studies of intact and impaired memory in age-related diseases suggest that normal aging has markedly different effects upon different memory systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) is critical in the modulation of cholesterol and phospholipid transport between cells of different types. Human apoE is a polymorphic protein with three common alleles, APO epsilon 2, APO epsilon 3, and APO epsilon 4. ApoE4 is associated with sporadic and late-onset familial Alzheimer disease (AD). Gene dose was shown to have an effect on risk of developing AD, age of onset, accumulation of senile plaques in the brain, and reduction of choline acetyltransferase (ChAT) activity in the hippocampus of AD subjects. To characterize the possible impact of the apoE4 allele on cholinergic markers in AD, we examined the effect of apoE4 allele copy number on pre- and postsynaptic markers of cholinergic activity. ApoE4 allele copy number showed an inverse relationship with residual brain ChAT activity and nicotinic receptor binding sites in both the hippocampal formation and the temporal cortex of AD subjects. AD cases lacking the apoE4 allele showed ChAT activities close or within age-matched normal control values. The effect of the apoE4 allele on cholinomimetic drug responsiveness was assessed next in a group (n = 40) of AD patients who completed a double-blind, 30-week clinical trial of the cholinesterase inhibitor tacrine. Results showed that > 80% of apoE4-negative AD patients showed marked improvement after 30 weeks as measured by the AD assessment scale (ADAS), whereas 60% of apoE4 carriers had ADAS scores that were worse compared to baseline. These results strongly support the concept that apoE4 plays a crucial role in the cholinergic dysfunction associated with AD and may be a prognostic indicator of poor response to therapy with acetylcholinesterase inhibitors in AD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severe mitochondrial genetic mutations lead to early degeneration of specific human tissues; milder mitochondrial mutations may cause degeneration at a later point in life. A mutation at position 4336 was reported to occur at increased frequency in individuals with Alzheimer disease (AD) and Parkinson disease [Shoffner, J. M., Brown, M. D., Torroni, A., Lott, M. T., Cabell, M. F., Mirra, S. S., Beal, M. F., Yang, C.-C., Gearing, M., Salvo, R., Watts, R. L., Juncos, J. L., Hansen, L. A., Crain, B. J., Fayad, M., Reckord, C. L. & Wallace, D. C. (1993) Genomics 17, 171-184]. We have investigated the notion that this mutation leads to excess risk of AD by using a case-control study design of 72 AD autopsies and 296 race- and age-matched controls. The 4336G mutation occurred at higher frequency in AD autopsies than age-matched controls, a statistically significant difference. Evolutionary analysis of mtDNAs bearing the 4336G mutation indicated they were more closely related to each other than to other mtDNAs, consistent with the model of a single origin for this mutation. The tight evolutionary relatedness and homoplasmy of mtDNAs that confer elevated risk for a late-onset disease contrast strikingly with the distant relatedness and heteroplasmy of mitochondrial genomes that cause early-onset disease. The dichotomy can be explained by a lack of selection against mutations that confer a phenotype at advanced age during most of the evolution of humans. We estimate that approximately 1.5 million Caucasians in the United States bear the 4336G mutation and are at significantly increased risk of developing mitochondrial AD in their lifetime. A mechanism for 4336G-mediated cell death is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inheritance of specific apolipoprotein E (apoE) alleles determines, in large part, the risk and mean age of onset of late-onset familial and sporadic Alzheimer disease. The mechanism by which the apoE isoforms differentially contribute to disease expression is, however, unknown. Isoform-specific differences have been identified in the binding of apoE to the microtubule-associated protein tau, which forms the paired helical filament and neurofibrillary tangles, and to amyloid beta peptide, a major component of the neuritic plaque. These and other isoform-specific interactions of apoE give rise to testable hypotheses for the mechanism(s) of pathogenesis of Alzheimer disease. An unresolved issue of increasing importance is the relationship between the structural pathological lesions and the cellular pathogenesis responsible for the clinical disease phenotype, progressive dementia. The identification of apoE in the cytoplasm of human neurons and the characterization of isoform-specific binding of apoE to the microtubule-associated proteins tau and MAP-2 present the possibility that apoE may affect microtubule function in the Alzheimer brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. Mice rendered hypoglycemic by a null mutation in the glucagon receptor gene Gcgr display late-onset retinal degeneration and loss of retinal sensitivity. Acute hyperglycemia induced by dextrose ingestion does not restore their retinal function, which is consistent with irreversible loss of vision. The goal of this study was to establish whether long-term administration of high dietary glucose rescues retinal function and circuit connectivity in aged Gcgr−/− mice. Methods. Gcgr−/− mice were administered a carbohydrate-rich diet starting at 12 months of age. After 1 month of treatment, retinal function and structure were evaluated using electroretinographic (ERG) recordings and immunohistochemistry. Results. Treatment with a carbohydrate-rich diet raised blood glucose levels and improved retinal function in Gcgr−/− mice. Blood glucose increased from moderate hypoglycemia to euglycemic levels, whereas ERG b-wave sensitivity improved approximately 10-fold. Because the b-wave reflects the electrical activity of second-order cells, we examined for changes in rod-to-bipolar cell synapses. Gcgr−/− retinas have 20% fewer synaptic pairings than Gcgr+/− retinas. Remarkably, most of the lost synapses were located farthest from the bipolar cell body, near the distal boundary of the outer plexiform layer (OPL), suggesting that apical synapses are most vulnerable to chronic hypoglycemia. Although treatment with the carbohydrate-rich diet restored retinal function, it did not restore these synaptic contacts. Conclusions. Prolonged exposure to diet-induced euglycemia improves retinal function but does not reestablish synaptic contacts lost by chronic hypoglycemia. These results suggest that retinal neurons have a homeostatic mechanism that integrates energetic status over prolonged periods of time and allows them to recover functionality despite synaptic loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014