940 resultados para Lagrangian particle tracking method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a formulation of the contact with friction between elastic bodies. This is a non linear problem due to unilateral constraints (inter-penetration of bodies) and friction. The solution of this problem can be found using optimization concepts, modelling the problem as a constrained minimization problem. The Finite Element Method is used to construct approximation spaces. The minimization problem has the total potential energy of the elastic bodies as the objective function, the non-inter-penetration conditions are represented by inequality constraints, and equality constraints are used to deal with the friction. Due to the presence of two friction conditions (stick and slip), specific equality constraints are present or not according to the current condition. Since the Coulomb friction condition depends on the normal and tangential contact stresses related to the constraints of the problem, it is devised a conditional dependent constrained minimization problem. An Augmented Lagrangian Method for constrained minimization is employed to solve this problem. This method, when applied to a contact problem, presents Lagrange Multipliers which have the physical meaning of contact forces. This fact allows to check the friction condition at each iteration. These concepts make possible to devise a computational scheme which lead to good numerical results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a first attempt to estimate mixing parameters from sea level observations using a particle method based on importance sampling. The method is applied to an ensemble of 128 members of model simulations with a global ocean general circulation model of high complexity. Idealized twin experiments demonstrate that the method is able to accurately reconstruct mixing parameters from an observed mean sea level field when mixing is assumed to be spatially homogeneous. An experiment with inhomogeneous eddy coefficients fails because of the limited ensemble size. This is overcome by the introduction of local weighting, which is able to capture spatial variations in mixing qualitatively. As the sensitivity of sea level for variations in mixing is higher for low values of mixing coefficients, the method works relatively well in regions of low eddy activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feature tracking is a key step in the derivation of Atmospheric Motion Vectors (AMV). Most operational derivation processes use some template matching technique, such as Euclidean distance or cross-correlation, for the tracking step. As this step is very expensive computationally, often shortrange forecasts generated by Numerical Weather Prediction (NWP) systems are used to reduce the search area. Alternatives, such as optical flow methods, have been explored, with the aim of improving the number and quality of the vectors generated and the computational efficiency of the process. This paper will present the research carried out to apply Stochastic Diffusion Search, a generic search technique in the Swarm Intelligence family, to feature tracking in the context of AMV derivation. The method will be described, and we will present initial results, with Euclidean distance as reference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as â˜Casimir functionalsâ. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach for solving the optimal power flow (OPF) problem is established by combining the reduced gradient method and the augmented Lagrangian method with barriers and exploring specific characteristics of the relations between the variables of the OPF problem. Computer simulations on IEEE 14-bus and IEEE 30-bus test systems illustrate the method. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a novel way to combine different observation models in a particle filter framework. This, so called, auto-adjustable observation model, enhance the particle filter accuracy when the tracked objects overlap without infringing a great runtime penalty to the whole tracking system. The approach has been tested under two important real world situations related to animal behavior: mice and larvae tracking. The proposal was compared to some state-of-art approaches and the results show, under the datasets tested, that a good trade-off between accuracy and runtime can be achieved using an auto-adjustable observation model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.