957 resultados para Lagrangian bounds in optimization problems
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.
Resumo:
The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.
Resumo:
In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.
Resumo:
Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
Tese de Doutoramento em Psicologia Aplicada.
Resumo:
The study aimed to identify different patterns of gambling activities (PGAs) and to investigate how PGAs differed in gambling problems, substance use outcomes, personality traits and coping strategies. A representative sample of 4989 young Swiss males completed a questionnaire assessing seven distinct gambling activities, gambling problems, substance use outcomes, personality traits and coping strategies. PGAs were identified using latent class analysis (LCA). Differences between PGAs in gambling and substance use outcomes, personality traits and coping strategies were tested. LCA identified six different PGAs. With regard to gambling and substance use outcomes, the three most problematic PGAs were extensive gamblers, followed by private gamblers, and electronic lottery and casino gamblers, respectively. By contrast, the three least detrimental PGAs were rare or non-gamblers, lottery only gamblers and casino gamblers. With regard to personality traits, compared with rare or non-gamblers, private and casino gamblers reported higher levels of sensation seeking. Electronic lottery and casino gamblers, private gamblers and extensive gamblers had higher levels of aggression-hostility. Extensive and casino gamblers reported higher levels of sociability, whereas casino gamblers reported lower levels of anxiety-neuroticism. Extensive gamblers used more maladaptive and less adaptive coping strategies than other groups. Results suggest that gambling is not a homogeneous activity since different types of gamblers exist according to the PGA they are engaged in. Extensive gamblers, electronic and casino gamblers and private gamblers may have the most problematic PGAs. Personality traits and coping skills may predispose individuals to PGAs associated with more or less negative outcomes.
Resumo:
Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.
Resumo:
The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.
Resumo:
Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.