950 resultados para Islets encapsulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kingella kingae is a bacterial pathogen that is increasingly recognized as an etiology of septic arthritis, osteomyelitis, bacteremia, and endocarditis in young children. The pathogenesis of K. kingae disease starts with bacterial adherence to the respiratory epithelium of the posterior pharynx. Previous work has identified type IV pili and a trimeric autotransporter protein called Knh (Kingella NhhA homolog) as critical factors for adherence to human epithelial cells. Additional studies established that the presence of a polysaccharide capsule interferes with Knh-mediated adherence. Given the inhibitory role of capsule during adherence we sought to uncover the genes involved in capsule expression to understand how capsule is elaborated on the cell surface. Additionally, this work aimed to further characterize capsule diversity among K. kingae clinical isolates and to investigate the relationship between capsule type and site of isolation.

We first set out to identify the carbohydrates present in the K. kingae capsule present in the prototype strain 269-492. Glycosyl composition and NMR analysis of surface extractable polysaccharides demonstrated two distinct polysaccharides, one consisting of GalNAc and Kdo with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and the other containing galactose alone with the structure →5)-β-Galf-(1→.

To discern the two polysaccharides we disrupted the ctrA gene required for surface localization of the K. kingae polysaccharide capsule and observed a loss of GalNAc and Kdo but no effect on the presence of Gal in bacterial surface extracts. In contrast, deletion of the pamABCDE locus involved in production of a reported galactan exopolysaccharide eliminated Gal but had no effect on the presence of GalNAc and Kdo in surface extracts. These results established that K. kingae strain KK01 produces a polysaccharide capsule with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and a separate exopolysaccharide with the structure →5)-β-Galf-(1→.

Having established that K. kingae produces a capsule comprised of GalNAc and Kdo, we next set out to identify the genetic determinants of capsule through a transposon mutagenesis screen. In addition to the previously identified ctrABCD operon, lipA, lipB, and a putative glycosyltransferase termed csaA (capsule synthesis region A gene A) were found to be essential for the production of surface-localized capsule. The ctr operon, lipA, lipB, and csaA were found to be present at unlinked locations throughout the genome, which is atypical for gram-negative organisms that elaborate a capsule dependent on an ABC-type transporter for surface localization. Through examining capsule localization in the ctrA, lipA, lipB, and csaA mutant strains, we determined that the ctrABCD, lipA/lipB, and csaA gene products respectively function in capsule export, assembly, and synthesis, respectively. The GalNAc transferase and Kdo transferase domains found in CsaA further support its role in catalyzing the synthesis of the GalNAc-Kdo capsule in the K. kingae prototype strain.

To investigate the capsule diversity that exists in K. kingae we screened a panel of strains isolated from patients with invasive disease or healthy carriers for the csaA capsule synthesis locus. We discovered that Kingella kingae expresses one of 4 capsule synthesis loci (csa, csb, csc, or csd) associated with a capsule consisting of Kdo and GalNAc (type a), Kdo and GlcNAc (type b), Kdo and ribose (type c), and GlcNAc and galactose (type d), respectively. Cloning of the csa, csb, csc, or csd locus into the empty flanking gene region in a non-encapsulated mutant (creation of an isogenic capsule swap) was sufficient to produce either the type a, type b, or type c capsule, respectively, further supporting the role of these loci in expression of a specific polysaccharide linkage. Capsule type a and capsule type b accounted for 96% of invasive strains. Conversely, capsule type c and capsule type d were found disproportionately among carrier isolates, suggesting that capsule type is important in promoting invasion and dissemination.

In conclusion, we discovered that Kingella kingae expresses a polysaccharide capsule and an exopolysaccharide on its surface that require distinct genetic loci for surface localization. Further investigation into genetic determinants of encapsulation revealed the loci ctrABCD, lipA/lipB, and a putative glycosyltransferase are required for capsule expression, with the gene products having roles in capsule export, assembly, and synthesis, respectively. The putative glycosyltransferase CsaA was determined to be a bifunctional enzyme with both GalNAc-transferase and Kdo-transferase activity. Furthermore, we discovered a total of 4 capsule types expressed in clinical isolates of K. kingae, each with a distinct capsule synthesis locus. The variation in the proportion of capsule types found between invasive strains and carriage strains suggest that capsule type is important in promoting invasion and dissemination. Taken together, this work expands our knowledge of the capsule types expressed among K. kingae carrier and invasive isolates and provides insights into the common genetic determinants of capsule expression. These contributions may lead to selecting clinically relevant capsule types to develop into a capsule based vaccine to prevent K. kingae colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the preparation of polymersomes from poly(ethylene glycol)-block-polycarbonate (PEG-PC) copolymers functionalized with pendant coumarin groups. Coumarin groups undergo photo-reversible dimerization when irradiated with specific ultraviolet wavelengths, so they can be used to prepare polymers with photo-responsive properties. In this case, the pendant coumarin groups enable stabilization of the polymersome membrane through photo-crosslinking of the hydrophobic block. Initially, several novel cinnamoyl and coumarin functionalized cyclic carbonate monomers were synthesized using ester, ether, or amide linkages. While the homopolymerization of these functionalized monomers proved challenging due to their high melting points, both cinnamoyl and coumarin functionalized monomers were successfully copolymerized with trimethylene carbonate (TMC) at 100 ℃ using a catalyst-free melt polymerization process where the TMC doubled as a solvent for the higher melting point monomer. Using this system, polycarbonate copolymers with up to 33% incorporation of the functionalized monomers were prepared. In addition, an investigation of some anomalous polymerization results identified previously unreported triethylamine-based catalysts for the melt polymerization of carbonate monomers. These studies also demonstrated that the catalyst-free polymerization of TMC occurs faster and at lower temperatures than previously reported. Subsequently, the photo-crosslinking of cinnamoyl and coumarin functionalized polycarbonates was compared and coumarin was identified as the more effective crosslinking agent when using 300-400 nm UV. An investigation of the photo-reversibility of the coumarin dimerization revealed no discernible change in the properties of crosslinked networks, but rapid photo-reversion in dilute solutions. The photo-crosslinking and photo-reversion kinetics of the coumarin functionalized polycarbonates were determined to be second-order in both cases. Finally, the self-assembly of PEG-PC diblock copolymers functionalized with coumarin was examined and both reverse solvent evaporation and solvent displacement were found to induce self-assembly, with hydrophilic mass fractions (f-factors) of 12-28% resulting in the formation of solid microparticles and nanoparticles and f-factors of 33-43% resulting in the formation of polymersomes. The stabilization of these polymersome membranes through photo-initiator-free photo-crosslinking was demonstrated with the crosslinking allowing polymersomes to withstand centrifugation at 12,000 x g. In addition, the encapsulation of calcein, as a model small molecule drug, in the stabilized polymersomes was successfully demonstrated using confocal microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the concentration of CO2 in surface seawaters increases (ocean acidification, or OA) the saturation of calcium carbonate decreases, preventing marine organisms from creating shells and other calcified structures. These effects of elevated CO2 on calcification have been previously shown in free-spawning larvae, but are not as well-studied in larvae that spend their early life stages in encapsulation. The focus of our study was to determine what effects CO2 would have on a diversity of encapsulated embryos, and whether different types of encapsulating structures provided different levels of protection against OA. We found only a moderate larval response to low (600 ppm), medium (1050 ppm), and high (1500 ppm) CO2 concentrations across all species taken as a whole, but did observe that several species/ populations exhibited a decline in shell length with no corresponding decline in inorganic content. This suggests that while calcification was not significantly decreased by our OA conditions, perhaps the morphology of certain shells changed, becoming wider and shorter. Our hatch times, which increased with elevated CO2, confirmed that increased CO2 placed embryos under stress during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(Carboxyethyl)-L-lysine (CEL), Nε-(Carboxymethyl)-L-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid (AA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 μg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet neogenesis-associated protein (INGAP) is a peptide found in pancreatic exocrine-, duct- and islet- non-β-cells from normal hamsters. Its increase induced by either its exogenous administration or by the overexpression of its gene enhances β-cell secretory function and increases β-cell mass by a combination of stimulation of cell replication and islet neogenesis and reduction of β-cell apoptosis. We studied the potential modulatory role of endogenous INGAP in insulin secretion using two different experimental approaches. Hamster islets transfected with INGAP-small interfering RNA (INGAP-siRNA) were used to study glucose-stimulated insulin secretion (GSIS). In parallel, freshly isolated islets were incubated with high glucose and the same concentration of either a specific anti-INGAP rabbit serum or normal rabbit serum. INGAP-siRNA transfected islets reduced their INGAP mRNA and protein content by 35.1% and 47.2%, respectively whereas GSIS decreased by 25.8%. GSIS by transfected islets attained levels comparable to those recorded in control islets when INGAP pentadecapeptide (INGAP-PP) was added to the culture medium. INGAP antibody in the medium decreased significantly GSIS in a dose-dependent manner. These results indicate that endogenous INGAP plays a physiological positive modulatory role in insulin secretion, supporting its possible use in the treatment of prediabetes and Type 2 diabetes.