915 resultados para Interleukin-6
Resumo:
Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.
Resumo:
OBJECTIVE: To investigate the relationship between NF-κB activity, cytokine levels, and pain sensitivities in a rodent model of osteoarthritis (OA). METHODS: OA was induced in transgenic NF-κB-luciferase reporter mice via intraarticular injection of monosodium iodoacetate (MIA). Using luminescence imaging we evaluated the temporal kinetics of NF-κB activity and its relationship to the development of pain sensitivities and serum cytokine levels in this model. RESULTS: MIA induced a transient increase in joint-related NF-κB activity at early time points (day 3 after injection) and an associated biphasic pain response (mechanical allodynia). NF-κB activity, serum interleukin-6 (IL-6), IL-1β, and IL-10 levels accounted for ∼75% of the variability in pain-related mechanical sensitivities in this model. Specifically, NF-κB activity was strongly correlated with mechanical allodynia and serum IL-6 levels in the inflammatory pain phase of this model (day 3), while serum IL-1β was strongly correlated with pain sensitivities in the chronic pain phase of the model (day 28). CONCLUSION: Our findings suggest that NF-κB activity, IL-6, and IL-1β may play distinct roles in pain sensitivity development in this model of arthritis and may distinguish the acute pain phase from the chronic pain phase. This study establishes luminescence imaging of NF-κB activity as a novel imaging biomarker of pain sensitivities in this model of OA.
Resumo:
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART). TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients.
Resumo:
The aim of this study was to further investigate the role of pro-inflammatory cytokines in the pathogenesis of fetal cererbral white matter injury associated with chorioamnionitis by charaterizing the time course of the cytokine response in the pregnant guinea pig following a maternal inflammatory insult. Chorioamnionitis increases the risk for fetal brain injury. In the guinea pig, a threshold maternal inflammatory response must be reached for significant fetal brain injury to occur. However, a previous study demonstrated that, by seven days after an acute maternal inflammatory insult, cytokine levels in both maternal and fetal compartments are not different from controls. The purpose of this study, therefore, was to test the hypothesis that a significant cytokine response occurs within the first seven days following an acute maternal inflammatory response. Pregnant guinea pigs (n=34) were injected intraperitoneally with 100µg/kg lipopolysaccharide (LPS) at 70% gestation and euthanized at 24 hours, 48 hours or 5 days following endotoxin exposure. Control animals were euthanized at 70% gestation without exposure. Concentrations of interleukin-6, interleukin 1-β and tumour necrosis factor-α (IL-6, IL-1β, TNF-α) were quantified in the maternal serum and amniotic fluid by enzyme-linked immunosorbent assay. IL-6 and IL-1β concentrations were elevated in the maternal serum at 24 hours and returned to control levels by five days. In the amniotic fluid, IL-6 peaked at 48 hours and IL-1β at 24 hours. TNF-α levels were not significantly increased. A single maternal LPS injection produces transient increases in cytokine concentrations in the maternal serum and amniotic fluid. This further implicates the cytokines as potential mediators of fetal white matter damage. Although this response might not be sufficient to produce the brain injury itself, it may initiate harmful pro-inflammatory cytokine cascades, which could even continue to harm the fetus following delivery. A human diagnostic protocol was developed to assess the use of serial serum biomarkers, including IL-6 and TNF-α, in the prediction of histological chorioamnionitis. Preliminary analysis of the pilot study suggests that certain biomarkers might be worthy of further investigation in a larger-scale study.
Resumo:
Objective: Prolonged limb ischemia followed by reperfusion (I/R) is associated with a systemic inflammatory response syndrome and remote acute lung injury. Ischemic preconditioning (IPC), achieved with repeated brief periods of I/R before the prolonged ischemic period, has been shown to protect skeletal muscle against ischemic injury. The aim of this study was to ascertain whether IPC of the limb before I/R injury also attenuates systemic inflammation and acute lung injury in a fully resuscitated porcine model of hind limb I/R. Methods: This prospective, randomized, controlled, experimental animal study was performed in a university-based animal research facility with 18 male Landrace pigs that weighed from 30 to 35 kg. Anesthetized ventilated swine were randomized (n = 6 per group) to three groups: sham-operated control group, I/R group (2 hours of bilateral hind limb ischemia and 2.5 hours of reperfusion), and IPC group (three cycles of 5 minutes of ischemia/5 minutes of reperfusion immediately preceding I/R). Plasma was separated and stored at -70° C for later determination of plasma tumor necrosis factor-a and interleukin-6 with bioassay as markers of systemic inflammation. Circulating phagocytic cell priming was assessed with a whole blood chemiluminescence assay. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were markers of edema and neutrophil sequestration, respectively. The alveolar-arterial oxygen gradient and pulmonary artery pressure were indices of lung function. Results: In a porcine model, bilateral hind limb (I/R) injury significantly increased plasma interleukin-6 concentrations, circulating phagocytic cell priming, and pulmonary leukosequestration, edema, and impaired gas exchange. Conversely, pigs treated with IPC before the onset of the ischemic period had significantly reduced interleukin-6 levels, circulating phagocytic cell priming, and experienced significantly less pulmonary edema, leukosequestration, and respiratory failure. Conclusion: Lower limb IPC protects against systemic inflammation and acute lung injury in lower limb I/R injury.
Resumo:
Previous studies have identified the DUB family of cytokine-regulated murine deubiquitinating enzymes, which play a role in the control of cell proliferation and survival. Through data base analyses and cloning, we have identified a human cDNA (DUB-3) that shows significant homology to the known murine DUB family members. Northern blotting has shown expression of this gene in a number of tissues including brain, liver, and muscle, with two transcripts being apparent (1.6 and 1.7 kb). In addition, expression was observed in cell lines including those derived from a number of hematopoietic tumors such as the Burkitt's lymphoma cell line RAJI. We have also demonstrated that DUB-3, which was shown to be an active deubiquitinating enzyme, is induced in response to interleukin-4 and interleukin-6 stimulation. Finally, we have demonstrated that constitutive expression of DUB-3 blocks proliferation and can initiate apoptosis in both IL-3-dependent Ba/F3 cells and NIH3T3 fibroblasts. These findings suggest that human DUB-3, like the murine DUB family members, is transiently induced in response to cytokines and can, when constitutively expressed, block growth factor-dependent proliferation.
Resumo:
Abnormal maternal inflammation during pregnancy is linked to complications such as preeclampsia and fetal growth restriction. There is growing evidence that insulin resistance is also associated with a heightened inflammatory state, and is linked to pregnancy complications such as gestational diabetes. This study tested the hypothesis that abnormal inflammation during pregnancy is causally linked to elevations in blood glucose and insulin resistance. To induce a state of abnormal systemic inflammation, bacterial lipopolysaccharide (LPS) was administered to pregnant rats on gestational days (GD) 13.5-16.5. Dams treated with LPS exhibited an abnormal immune response characterized by an elevation in white blood cells, which was linked to reduced fetal weight and increased glucose levels over pregnancy. Abnormal inflammation is characterized by increased levels of circulating pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF) and interleukin-6, which contribute to insulin resistance by inhibiting the insulin signalling pathway. TNF in particular induces a serine phosphorylation (pSer307) of insulin receptor substrate 1 (IRS-1). In our model, insulin resistance was assessed by measuring the extent of pSer307 of IRS-1 and total IRS-1 expression in skeletal muscle, as well as changes in metabolic parameters and pancreas tissue morphology associated with insulin resistance. LPS-treated dams exhibited a significant reduction in IRS-1 expression, elevation in fasting glucose levels, and reduction in insulin sensitivity indices. There were also biologically relevant increases in fasting plasma insulin levels and insulin resistance indices, but not pSer307 of IRS-1 and pancreatic islet size. To determine whether inflammation plays a role in reducing insulin signalling and the other changes associated with LPS administration, etanercept, a TNF antagonist, was administered on GDs 13.5 and 15.5 prior to LPS injections. With the exception of IRS-1 expression, in rats treated with etanercept all of the measured parameters remained at the levels observed in saline controls, indicating a link between abnormal inflammation and insulin resistance. The results of this study support the practice of monitoring the inflammatory conditions of the mother prior to and during pregnancy, and support further investigation into the potential use of anti-inflammatory agents during pregnancy in women at risk of insulin resistance and gestational diabetes.
Resumo:
Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
Objectives: Cilostazol improves walking distance in peripheral arterial disease (PAD) patients. The study objectives were to assess the effects of cilostazol on walking distance, followed by the additional assessment of cilostazol on exercise-induced ischaemiaereperfusion injury in such patients.
Methods: PAD patients were prospectively recruited to a double-blinded, placebo-controlled trial. Patients were randomised to receive either cilostazol 100 mg or placebo twice a day. The primary end-point was an improvement in walking distance. Secondary end-points included the assessment of oxygen-derived free-radical generation, antioxidant consumption and other markers of the in?ammatory cascade. Initial and absolute claudication distances (ICDs and ACDs, respectively) were measured on a treadmill. In?ammatory response was assessed before and 30 min post-exercise by measuring lipid hydroperoxide, ascorbate, atocopherol, b-carotene, P-selectin, intracellular and vascular cell-adhesion molecules (I-CAM and V-CAM), thromboxane B2 (TXB2), interleukin-6, interleukin-10, high-sensitive C-reactive protein (hsCRP), albuminecreatinine ratio (ACR) and urinary levels of p75TNF receptor. All tests were performed at baseline and 6 and 24 weeks.
Results: One hundred and six PAD patients (of whom 73 were males) were recruited and successfully randomised from December 2004 to January 2006. Patients who received cilostazol demonstrated a more signi?cant improvement in the mean percentage change from baseline in ACD (77.2% vs. 26.6% at 6 weeks, pZ0.026 and 161.7% vs. 79.0% at 24 weeks, pZ0.048) as compared to the placebo. Cilostazol reduced lipid hydroperoxide levels compared to a placebo-related increase before and after exercise (6 weeks: pre-exercise: 11.8% vs.
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells
Resumo:
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Helminth Cysteine Proteases Inhibit TRIF-dependent Activation of Macrophages via Degradation of TLR3
Resumo:
Helminth pathogens prepare a Th2 type immunological environment in their hosts to ensure their longevity. They achieve this by secreting molecules that not only actively drive type 2 responses but also suppress type 1 responses. Here, we show that the major cysteine proteases secreted from the helminth pathogens Fasciola hepatica (FheCL1) and Schistosoma mansoni (SmCB1) protect mice from the lethal effects of lipopolysaccharide by preventing the release of inflammatory mediators, nitric oxide, interleukin-6, tumor necrosis factor alpha, and interleukin-12, from macrophages. The proteases specifically block the MyD88-independent TRIF-dependent signaling pathway of Toll-like receptor (TLR) 4 and TLR3. Microscopical and flow cytometric studies, however, show that alteration of macrophage function by cysteine protease is not mediated by cleavage of components of the TLR4 complex on the cell surface but occurs by degradation of TLR3 within the endosome. This is the first study to describe a parasite molecule that degrades this receptor and pinpoints a novel mechanism by which helminth parasites modulate the innate immune responses of their hosts to suppress the development of Th1 responses.
Resumo:
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.
Resumo:
The aim of this study was to evaluate the safety and effect on clinical outcomes and biomarkers of inflammation and tissue damage of the neutrophil elastase inhibitor AZD9668 (60 mg twice daily orally for 4 weeks) in cystic fibrosis. This was a randomised, double-blind, placebo-controlled study. Primary outcome measures were sputum neutrophil count, lung function, 24-h sputum weight, BronkoTest® diary card data and health-related quality-of-life (revised cystic fibrosis quality-of-life questionnaire). Secondary end-points included sputum neutrophil elastase activity, inflammatory biomarkers in sputum and blood, urine and plasma desmosine (an elastin degradation marker), AZD9668 levels and safety parameters (adverse events, routine haematology, biochemistry, electrocardiogram and sputum bacteriology). 56 patients were randomised, of which 27 received AZD9668. There was no effect for AZD9668 on sputum neutrophil counts, neutrophil elastase activity, lung function or clinical outcomes, including quality of life. In the AZD9668 group, there was a trend towards reduction in sputum inflammatory biomarkers with statistically significant changes in interleukin-6, RANTES and urinary desmosine. The pattern of adverse events was similar between groups. Consistent reductions in sputum inflammatory biomarkers were seen in the AZD9668 group, and reduction in urinary desmosine suggests that AZD9668 impacts elastin cleavage by neutrophil elastase.
Resumo:
Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 µmol/L [means ± SD], P <.05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 µmol/L, respectively [means ± SD], P <.05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.