957 resultados para Interglacial Period


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the evolution of North Atlantic Deep Water (NADW) is key to understanding the past evolution of the climatic system. We developed a new rock-magnetic method to determine the constituent magnetic minerals of sediments and report on the evolution of NADW during 2.2-2.9 Ma. We measured isothermal remanence acquisition curves of North Atlantic deep-sea sediments drilled at the Gardar Drift and decomposed the first derivatives of these curves into high-coercivity and low-coercivity components. Residuals of the decomposition were sufficiently small throughout the study interval, confirming that the Gardar Drift sediments represent a mixing of the two end-members. Fractional changes of the high-coercivity component represent variation of the Iceland-Scotland Overflow Water, a branch of NADW formed at the Nordic Seas. The high-coercivity component increased significantly during an interglacial period just after ~2.68 Ma, which suggests that NADW formation in the Nordic Seas abruptly intensified at this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we review a global set of alkenone- and foraminiferal Mg/Ca-derived sea surface temperatures (SST) records from the Holocene and compare them with a suite of published Eemian SST records based on the same approach. For the Holocene, the alkenone SST records belong to the actualized GHOST database (Kim, J.-H., Schneider R.R., 2004). The actualized GHOST database not only confirms the SST changes previously described but also documents the Holocene temperature evolution in new oceanic regions such as the Northwestern Atlantic, the eastern equatorial Pacific, and the Southern Ocean. A comparison of Holocene SST records stemming from the two commonly applied paleothermometry methods reveals contrasting - sometimes divergent - SST evolution, particularly at low latitudes where SST records are abundant enough to infer systematic discrepancies at a regional scale. Opposite SST trends at particular locations could be explained by out-of-phase trends in seasonal insolation during the Holocene. This hypothesis assumes that a strong contrast in the ecological responses of coccolithophores and planktonic foraminifera to winter and summer oceanographic conditions is the ultimate reason for seasonal differences in the origin of the temperature signal provided by these organisms. As a simple test for this hypothesis, Eemian SST records are considered because the Holocene and Eemian time periods experienced comparable changes in orbital configurations, but had a higher magnitude in insolation variance during the Eemian. For several regions, SST changes during both interglacials were of a similar sign, but with higher magnitudes during the Eemian as compared to the Holocene. This observation suggests that the ecological mechanism shaping SST trends during the Holocene was comparable during the penultimate interglacial period. Although this "ecology hypothesis" fails to explain all of the available results, we argue that any other mechanism would fail to satisfactorily explain the observed SST discrepancies among proxies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new generalized schematic map of distribution of recent sediments within Eurasian Arctic shelves is considered. The sediments have accumulated as a result of interaction of various factors and processes specific to high latitudes. They include input of terrigenous material by modern glaciers, ice transport, thermal abrasion, sedimentation controlled by many years of ice cover, and others. Characteristic regularity is marked over Arctic shelves: in seas with heavier ice cover, the most fine-grained deposits are distributed, they contain minimum amount of coarse-grained ice rafted debris; in seas with lighter ice cover mosaic distribution of various types of sediments is observed. Composition of surface sediments from the Arctic shelves corresponds to a relatively cool stage of the modern interglacial period. In the 21-st century a new warming is expected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interglacial lacustrine sediments of 0.3-0.6 m thickness are found in the basin of Wurzach over a distance of about 9 km as detected by 5 borings. The interglacial bed is intercalated between lacustrine sediments of Würm (above) and glaciolacustrine sediments of the Younger Riss (below). Most of the Würmian sediments are silty-sandy, calcareous and varved deposits. They were deposited as bottom sediments of a delta, which had formed in the glacial lake filling the Wurzach basin during the Upper Würm. The terminal moraine of the Younger Riss is found in the N and S of the Reed of Wurzach. In the NE it is overlain by sediments of Würm and Holocene age. The pollen bearing part of the new profile represents the last interglacial period (except its earliest phases), the two Lower Würm interstadials, which are equivalents of the Brørup and Odderade interstadial phases, and a third interstadial, the Dürnten, known from other localities in the forelands of the Alps with a forest vegetation, which consisted mainly of spruce and larch trees, and the intercalated stadial phases. These interstadials are different from those described earlier by FILZER, which on the contrary represent cold periods with highly increased reworking of pollen. The equivalents of the Brørup, Odderade and Dürnten interstadials are the "Kiefer-Fichten-Kampfzeit" and part of the "Kiefernzeit mit Fichte" of FILZER. The characteristic series of climatic events known already from a great number of sites scattered all over Europe and again at Wurzach proves that the Riss/Würm- and the Eem interglacial periods are time-equivalents. Differing amounts of Carpinus and Abies at different places in the northern foreland of the Alps are related to the migration history of the two species during the last interglacial period and must not be used to distinguish different types of interglacials (type Zeifen, type Pfefferbichl).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Meerfelder Maar (Germany) provides a varved record from the Last Glacial/Interglacial transition back to ca 1500 years BP. This study shows results for the Holocene sequence from new cores collected in 2009 based on varve counting, microfacies and micro-XRF analyses. The main goal of combining those analyses is to provide a new approach for interpreting long-term palaeolimnological proxy data and testing the climate-proxy stationarity throughout the current interglacial period. Varve counting provides a new independent Holocene chronology (MFM2012) with an estimated counting error of 1-0.5% and supported by 14C dating. Varve structure and thickness and geochemical composition of the varves give information about the main environmental processes that affect the lake and its catchment as well as the possible climate variability behind. Varves are couplets of i) a spring/summer laminae composed of monospecific diatom blooms and ii) an autumn/winter sub-layer made of minerogenic material and re-worked sediments. Thickness of the varves and sub-layers reflect lake variability and allow seasons to be distinguished as well as seasonal proxies. Changes in the winter minerogenic influx into the lake are reflected by Ti intensities and the Si/Ti ratio as a indicator for diatom concentration, which can be used as a proxy for water circulation during the early spring. Long-term variability of geochemical composition shows a reduction of the detrital material input (Ti) at 5,000 varve yrs BP and a visible sensitivity to water mixing (Si/Ti) during the Late Holocene. Variations of Ti intensities during the early and mid-Holocene do not show a clear relationship with climate. In contrast, higher values of the Si/Ti ratio together with thicker varves have been interpreted as wind-stress phases, which coincide with centennial variability of European cold/wet episodes during the Late Holocene. Our findings show that a long-term change in the lake and/or variability of the climate system can influence proxy sensitivity of a lacustrine record.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here a new analytical methodology is described for measuring the isotopic composition of boron in foraminifera using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). This new approach is fast (~10 samples analysed in duplicate per analytical session) and accurate (to better than 0.25 per mil at 95% confidence) with acceptable sample size requirements (1-3 mg of carbonate). A core top calibration of several common planktic and two benthic species from geographically widespread localities shows a very close agreement between the isotopic composition measured by MC-ICPMS and the isotopic composition of B(OH)-4 in seawater (as predicted using the recently measured isotopic equilibrium factor of 1.0272) at the depth of habitat. A down core and core top investigation of boron concentration (B/Ca ratio) shows that the partition coefficient is influenced by [CO2-3] complicating the application of this proxy. Nevertheless, it is demonstrated that these two proxies can be used to fully constrain the carbonate system of surface water in the Caribbean Sea (ODP Site 999A) over the last 130 kyr. This reconstruction shows that during much of the Holocene and the last interglacial period surface water at Site 999A was in equilibrium with the atmosphere with respect to CO2. During the intervening colder periods although the surface water pCO2 was lower than the Holocene, it was a minor to significant source of CO2 to the atmosphere possibly due to either an expansion of the eastern equatorial Atlantic upwelling zone, or a more local expansion of coastal upwelling in the southern Caribbean. Such reorganisation of the oceanic carbonate system in favour of a larger source of CO2 to the atmosphere from the equatorial ocean may require mechanisms responsible for lowering atmospheric CO2 during glacial periods to be more efficient than previously supposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions of Late Quaternary surface sediment and sediment cores from the south Atlantic and southeast Pacific sectors of the Southern Ocean are used to constrain the provenance and transport mechanisms of their terrigenous component. We report isotopic and mineralogical data for core samples from three localities, the Mid-Atlantic Ridge at 41°S and the northern and southern Scotia Sea. In addition, data for surface sediment samples from the south Atlantic and southeast Pacific sectors of the Southern Ocean are presented. The variations of Sr and Nd isotopic compositions of the bulk sediment samples in all cores were correlated with the magnetic susceptibility of the sediment and with the inferred glacial-interglacial stages. The isotopic data indicate that, during glacial periods, sediment was delivered from continental crust with a shorter residence time than that supplying material during interglacial periods. At the core site near the Mid-Atlantic Ridge, Nd isotopic, combined with mineralogical evidence indicates interglacial period deposition of a relatively high amount of kaolinite and silt with low epsilon-Nd values < -8. The material was probably supplied by North Atlantic Deep Water from low latitudes. For glacial periods, a high contribution of silt and clay with epsilon-Nd > -4.5, probably derived from southern South America, was indicated. The glacial-interglacial shift in sources may be due to either a decreasing influence of North Atlantic Deep Water during glacial times or by a larger contribution of glaciogenic detritus from southern South America. At the core site in the northern Scotia Sea, sediment of interglacial periods is dominated by smectite with epsilon-Nd < - 6 and silt with epsilon-Nd > -4. We suggest that smectite was derived from the Falkland shelf and silt was derived from the Argentinian shelf. During glacial periods, the Argentinian shelf was an important source for silt and chlorite with epsilon-Nd > -4. The contribution from the Falkland shelf seems to have remained similar during glacial and interglacial periods. Hydrographic transport by bottom currents and turbidites could account for the high glacial detrital flux. An evaluation of the significance of an aeolian contribution to deep sea sediment suggests that it plays only a minor role. In the southern Scotia Sea, the Antarctic Peninsula is considered an important source for young material with epsilon-Nd > -4, in particular during glacial periods. During interglacial periods, sediment supply from the Antarctic Peninsula was lower than during glacial times, resulting in a relatively high contribution of old material (epsilon-Nd < -8) from East Antarctica. Deep water currents and icebergs could account for the transport of the old component to the southern Scotia Sea. The accumulation rates of material from the various source regions for glacial times are in agreement with an increase in the strength of the Antarctic Circumpolar Current. The production rate and the circulation pattern of bottom water in the Weddell Sea appear to have remained similar over most of the last 150 kyr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.