890 resultados para Interactive Information Retrieval
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
This thesis introduces a novel conceptual framework to support the creation of knowledge representations based on enriched Semantic Vectors, using the classical vector space model approach extended with ontological support. One of the primary research challenges addressed here relates to the process of formalization and representation of document contents, where most existing approaches are limited and only take into account the explicit, word-based information in the document. This research explores how traditional knowledge representations can be enriched through incorporation of implicit information derived from the complex relationships (semantic associations) modelled by domain ontologies with the addition of information presented in documents. The relevant achievements pursued by this thesis are the following: (i) conceptualization of a model that enables the semantic enrichment of knowledge sources supported by domain experts; (ii) development of a method for extending the traditional vector space, using domain ontologies; (iii) development of a method to support ontology learning, based on the discovery of new ontological relations expressed in non-structured information sources; (iv) development of a process to evaluate the semantic enrichment; (v) implementation of a proof-of-concept, named SENSE (Semantic Enrichment kNowledge SourcEs), which enables to validate the ideas established under the scope of this thesis; (vi) publication of several scientific articles and the support to 4 master dissertations carried out by the department of Electrical and Computer Engineering from FCT/UNL. It is worth mentioning that the work developed under the semantic referential covered by this thesis has reused relevant achievements within the scope of research European projects, in order to address approaches which are considered scientifically sound and coherent and avoid “reinventing the wheel”.
Resumo:
The extraction of relevant terms from texts is an extensively researched task in Text- Mining. Relevant terms have been applied in areas such as Information Retrieval or document clustering and classification. However, relevance has a rather fuzzy nature since the classification of some terms as relevant or not relevant is not consensual. For instance, while words such as "president" and "republic" are generally considered relevant by human evaluators, and words like "the" and "or" are not, terms such as "read" and "finish" gather no consensus about their semantic and informativeness. Concepts, on the other hand, have a less fuzzy nature. Therefore, instead of deciding on the relevance of a term during the extraction phase, as most extractors do, I propose to first extract, from texts, what I have called generic concepts (all concepts) and postpone the decision about relevance for downstream applications, accordingly to their needs. For instance, a keyword extractor may assume that the most relevant keywords are the most frequent concepts on the documents. Moreover, most statistical extractors are incapable of extracting single-word and multi-word expressions using the same methodology. These factors led to the development of the ConceptExtractor, a statistical and language-independent methodology which is explained in Part I of this thesis. In Part II, I will show that the automatic extraction of concepts has great applicability. For instance, for the extraction of keywords from documents, using the Tf-Idf metric only on concepts yields better results than using Tf-Idf without concepts, specially for multi-words. In addition, since concepts can be semantically related to other concepts, this allows us to build implicit document descriptors. These applications led to published work. Finally, I will present some work that, although not published yet, is briefly discussed in this document.
Resumo:
Currently the world swiftly adapts to visual communication. Online services like YouTube and Vine show that video is no longer the domain of broadcast television only. Video is used for different purposes like entertainment, information, education or communication. The rapid growth of today’s video archives with sparsely available editorial data creates a big problem of its retrieval. The humans see a video like a complex interplay of cognitive concepts. As a result there is a need to build a bridge between numeric values and semantic concepts. This establishes a connection that will facilitate videos’ retrieval by humans. The critical aspect of this bridge is video annotation. The process could be done manually or automatically. Manual annotation is very tedious, subjective and expensive. Therefore automatic annotation is being actively studied. In this thesis we focus on the multimedia content automatic annotation. Namely the use of analysis techniques for information retrieval allowing to automatically extract metadata from video in a videomail system. Furthermore the identification of text, people, actions, spaces, objects, including animals and plants. Hence it will be possible to align multimedia content with the text presented in the email message and the creation of applications for semantic video database indexing and retrieving.
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Studies in Computational Intelligence, 616
Resumo:
Lecture Notes in Computer Science, 9309
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Text Mining has opened a vast array of possibilities concerning automatic information retrieval from large amounts of text documents. A variety of themes and types of documents can be easily analyzed. More complex features such as those used in Forensic Linguistics can gather deeper understanding from the documents, making possible performing di cult tasks such as author identi cation. In this work we explore the capabilities of simpler Text Mining approaches to author identification of unstructured documents, in particular the ability to distinguish poetic works from two of Fernando Pessoas' heteronyms: Alvaro de Campos and Ricardo Reis. Several processing options were tested and accuracies of 97% were reached, which encourage further developments.
Resumo:
Recently there has been a renewed research interest in the properties of non survey updates of input-output tables and social accounting matrices (SAM). Along with the venerable and well known scaling RAS method, several alternative new procedures related to entropy minimization and other metrics have been suggested, tested and used in the literature. Whether these procedures will eventually substitute or merely complement the RAS approach is still an open question without a definite answer. The performance of many of the updating procedures has been tested using some kind of proximity or closeness measure to a reference input-output table or SAM. The first goal of this paper, in contrast, is the proposal of checking the operational performance of updating mechanisms by way of comparing the simulation results that ensue from adopting alternative databases for calibration of a reference applied general equilibrium model. The second goal is to introduce a new updatin! g procedure based on information retrieval principles. This new procedure is then compared as far as performance is concerned to two well-known updating approaches: RAS and cross-entropy. The rationale for the suggested cross validation is that the driving force for having more up to date databases is to be able to conduct more current, and hopefully more credible, policy analyses.
Resumo:
Internet va creixent i pot implicar que no sempre es garanteixi la qualitat de continguts. Aquest treball planteja veure com els individus usen una sèrie de mètodes (o etnomètodes) (Garfinkel, 1968), que poden ser més o menys sistemàtics, o més o menys informals, i que fan servir per a trobar la informació més vàlida. Gràcies a aquests mètodes, els individus quotidianament avaluen la credibilitat de les pàgines web.