991 resultados para Interaction Site
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
The Prydz Bay area is a key region for studying and understanding the history of the eastern Antarctic Continental Ice Sheet (O'Brien, Cooper, Richter, et al., 2001, doi:10.2973/odp.proc.ir.188.2001). Ocean Drilling Program (ODP) Site 1165 is situated in a water depth of 3357 m on the continental rise offshore from Prydz Bay and lies in front of the outlet for the Lambert Glacier-Amery Ice Shelf system that today drains 22% of East Antarctica. The site was drilled into mixed pelagic and hemipelagic sediments from the southwestern side of the Wild Drift. The drift is an elongate sediment body formed by the interaction of sediment supplied from continental shelf and slope with westward-flowing bottom currents. The sedimentary sequence is characterized by alternations between a generally gray to dark gray facies and a green to greenish gray facies. The greenish facies are structureless diatom-bearing clays with common bioturbation and larger amounts (>15%-20%) of biogenic silica, dispersed clasts, and lonestones than the dark gray facies, which are mostly less bioturbated clay with some silt laminations (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.103.2001). High-quality advanced piston corer and extended core barrel cores containing nearly complete sections of middle Miocene to early Pliocene age allow a detailed characterization of sedimentary cycles and can provide indications for ice advances of the Lambert Glacier system into Prydz Bay, for the extent of sea ice, and for changes in oceanic circulation. The purpose of this work is to provide a data set of coarse-fraction mass percentage (>63, >125, and >250 µm) and biogenic silica content measured on sediments of late Miocene to early Pliocene age drilled at Site 1165. Additionally, high-resolution records of magnetic susceptibility (MS) and gamma ray attenuation (GRA) bulk density are presented. These shipboard data sets were edited postcruise. Furthermore, I provide a high-resolution dry bulk density record that is derived from GRA bulk density and can be used for the calculation of mass accumulation rates. These sedimentological and physical parameters will be used in future work to understand the depositional pattern of alternating biogenic and terrigenous sediments that was observed at Site 1165 (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.103.2001).
Resumo:
This paper reports results of an investigation of a representative collection of samples recovered by deep-sea drilling from the oceanic basement 10 miles west of the rift valley axis in the crest zone of the Mid- Atlantic Ridge at 15°44'N (Sites 1275B and 1275D). Drilling operations were carried out during Leg 209 of the Drilling Vessel JOIDES Resolution within the framework of the Ocean Drilling Program (ODP). The oceanic crust was penetrated to depth of 108.7 m at Site 1275B and 209 m at Site 1275D. We reconstructed the following sequence of magmatic and metamorphic events resulting in the formation of a typical oceanic core complex of slow-spreading ridges: (1) formation of strongly fractionated (enriched in iron and titanium) tholeiitic magmatic melt parental to gabbroids under investigation in a large magma chamber located in a shallow mantle and operating for a long time under steady-state conditions; (2) transfer of the parental magmatic melt of the gabbroids to the base of the oceanic crust, its interaction with host mantle peridotites, and formation of troctolites and plagioclase peridotites; (3) intrusion of enriched trondhjemite melts as veins and dikes in the early formed plutonic complex, contact recrystallization of the gabbro, and development in the peridotite-gabbro complex of enriched geochemical signatures owing to influence of trondhjemite injections; (4) emplacement of dolerite dikes (transformed to diabases); (5) metamorphism of upper epidoteamphibolite facies with participation of marine fluids; and (6) rapid exhumation of the plutonic complex to the seafloor accompanied by greenschist-facies metamorphism. Distribution patterns of Sr and Nd isotopes and strongly incompatible elements in the rocks suggest contributions from two melt sources to the magmatic evolution of the MAR crest at 15°44'N: a depleted reservoir responsible for formation of the gabbros and diabases and an enriched reservoir, from which trondhjemites (granophyres) were derived.
Resumo:
ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.
Resumo:
Alteration in a submarine remnant volcanic arc should leave an important record of (1) the mineralogy of sea water-volcanic arc rock interaction; (2) the chemistry of solid reaction products; (3) the isotopic characteristics of such reactions (Muehlenbachs and Clayton, 1972; Spooner, Beckinsale, et al , 1977; Spooner, Chapman, et al., 1977); (4) the metallogenesis within such a sequence (Mitchell and Bell, 1973); and (5) the geothermal gradient during the alteration. The volcaniclastic breccias, tuffs, and igneous units of Sites 448 (993 m) and 451 (930.5 m) on the Palau-Kyushu and West Mariana ridges, respectively, are particularly suited for such studies because the thick sequences have remained submarine throughout their history, seemingly unaffected by magmatic or hydrothermal events after cessation of volcanic activity. Also, shipboard observations indicated a change in alteration products with depth. At both sites the igneous units and volcaniclastic rocks were altered to brownish clays and zeolites near the top of the volcanic sequence; to bright blue green clays and zeolites at moderate depths; and to very dark, nearly opaque, forest green clays and zeolites at still greater depths. Native copper occurs both as disseminated pockets in the volcaniclastic breccias and vesicular basalts and as veins in the breccias; native copper is restricted to stratigraphic levels characterized by the absence of sulfides or oxides of copper and iron. Although some native copper is found in vesicles of basalts and may be orthomagmatic, most of it is clearly secondary. Near dikes and sills, higher sulfur fugacity conditions caused the precipitation of iron and copper sulfides with an absence of native copper (Garrels and Christ, 1965). The occurrence of native copper may be an initial stage of Cu metallogenesis that forms porphyry coppers in island arcs (Mitchell and Bell, 1973). This study will address primarily the possibility that hydrothermal sea water interaction with volcanic arc rocks has created the mineralogical and isotopic zonation in Leg 59 cores. Hydrothermal activity can be expected in a rapidly growing island arc and is probably the result of a high geothermal gradient prevalent during arc magmatic activity. The chemical character of the alteration is further discussed by Hajash (1981).
Resumo:
The equatorial Pacific is an important part of the global carbon cycle and has been affected by climate change through the Cenozoic (65 Ma to present). We present a Miocene (12-24 Ma) biogenic sediment record from Deep Sea Drilling Project (DSDP) Site 574 and show that a CaCO3 minimum at 17 Ma was caused by elevated CaCO3 dissolution. When Pacific Plate motion carried Site 574 under the equator at about 16.2 Ma, there is a minor increase in biogenic deposition associated with passing under the equatorial upwelling zone. The burial rates of the primary productivity proxies biogenic silica (bio-SiO2) and biogenic barium (bio-Ba) increase, but biogenic CaCO3 decreases. The carbonate minimum is at ~17 Ma coincident with the beginning of the Miocene climate optimum; the transient lasts from 18 to 15 Ma. Bio-SiO2 and bio-Ba are positively correlated and increase as the equator was approached. Corg is poorly preserved, and is strongly affected by changing carbonate burial. Terrestrial 232Th deposition, a proxy for aeolian dust, increases only after the Site 574 equator crossing. Since surface production of bio-SiO2, bio-Ba, and CaCO3 correlate in the modern equatorial Pacific, the decreased CaCO3 burial rate during the Site 574 equator crossing is driven by elevated CaCO3 dissolution, representing elevated ocean carbon storage and elevated atmospheric CO2. The length of the 17 Ma CaCO3 dissolution transient requires interaction with a 'slow' part of the carbon cycle, perhaps elevated mantle degassing associated with the early stages of Columbia River Basalt emplacement.
Resumo:
The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.
Resumo:
A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.
Resumo:
A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.
Resumo:
Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.
Resumo:
In this paper the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. Hontomín–Huermeces has been selected as a pilot site for the injection of pure (>99%) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980s for which detailed stratigraphical logs are available, indicating the presence of a confined saline aquifer at the depth of about 1500 m into which less than 100,000 tons of iquid CO2 will be injected, possibly starting in 2013. The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3− composition, similar to that of the surface waters. This is also supported by the oxygen and hydrogen isotopic ratios that have values lying between those of the Global and the Mediterranean Meteoric Water Lines. Some spring waters close to the oil wells are haracterized by relatively high concentrations of NO3− (up to 123 mg/L), unequivocally suggesting an anthropogenic source that adds to the main water–rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl−, SO42−, As, B and Ba were measured in two springs discharging a few hundred meters from the oil wells and in the Rio Ubierna. These contents are significantly higher than those of the whole set of the studied waters and are possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. No evidence of deep-seated gases interacting with the Hontomín–Huermeces waters was recognized in the chemistry of the disolved gases. This is likely due to the fact that they are mainly characterized by an atmospheric source as highlighted by the high contents of N2, O2 and Ar and by N2/Ar ratios that approach that of ASW (Air Saturated Water) and possibly masking any contribution related to a deep source. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some water samples, likely related to a biogenic source. The geochemical and isotopic data of this work are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may be affecting the quality of the waters in the shallow hydrological circuits at Hontomín–Huermeces. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.
Resumo:
Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que realizan las simulaciones y los médicos que operan en el quirófano. Por otra parte, los métodos de cálculo más simplificados reducen el tiempo de cálculo pero pueden proporcionar resultados no realistas. El objetivo de esta tesis es combinar los conceptos de autorregulación e impedancia del sistema circulatorio, la interacción flujo sanguíneo-pared arterial y modelos geométricos idealizados tridimensionales de las arterias pero sin pérdida de realismo, con objeto de proponer una metodología de simulación que proporcione resultados correctos y completos, con tiempos de cálculo moderados. En las simulaciones numéricas, las condiciones de contorno basadas en historias de presión presentan inconvenientes por ser difícil conocerlas con detalle, y porque los resultados son muy sensibles ante pequeñas variaciones de dichas historias. La metodología propuesta se basa en los conceptos de autorregulación, para imponer la demanda de flujo aguas abajo del modelo en el ciclo cardiaco, y la impedancia, para representar el efecto que ejerce el flujo en el resto del sistema circulatorio sobre las arterias modeladas. De este modo las historias de presión en el contorno son resultados del cálculo, que se obtienen de manera iterativa. El método propuesto se aplica en una geometría idealizada del arco aórtico sin patologías y en otra geometría correspondiente a una disección Stanford de tipo A, considerando la interacción del flujo pulsátil con las paredes arteriales. El efecto de los tejidos circundantes también se incorpora en los modelos. También se hacen aplicaciones considerando la interacción en una geometría especifica de un paciente anciano que proviene de una tomografía computarizada. Finalmente se analiza una disección Stanford tipo B con tres modelos que incluyen la fenestración del saco. Clinicians demand fast and reliable numerical results of cardiovascular biomechanic simulations for their urgent pre-surgery decissions. Researchers during many years have work on different numerical methods in order to attract the clinicians' confidence to their colorful contours. Though precise but expensive and time-consuming methodologies create a gap between numerical biomechanics and hospital personnel. On the other hand, simulation simplifications with the aim of reduction in computational time may cause in production of unrealistic outcomes. The main objective of the current investigation is to combine ideas such as autoregulation, impedance, fluid-solid interaction and idealized geometries in order to propose a computationally cheap methodology without excessive or unrealistic simplifications. The pressure boundary conditions are critical and polemic in numerical simulations of cardiovascular system, in which a specific arterial site is of interest and the rest of the netwrok is neglected but represented by a boundary condition. The proposed methodology is a pressure boundary condition which takes advantage of numerical simplicity of application of an imposed pressure boundary condition on outlets, while it includes more sophisticated concepts such as autoregulation and impedance to gain more realistic results. Incorporation of autoregulation and impedance converts the pressure boundary conditions to an active and dynamic boundary conditions, receiving feedback from the results during the numerical calculations and comparing them with the physiological requirements. On the other hand, the impedance boundary condition defines the shapes of the pressure history curves applied at outlets. The applications of the proposed method are seen on idealized geometry of the healthy arotic arch as well as idealized Stanford type A dissection, considering the interaction of the arterial walls with the pulsatile blood flow. The effect of surrounding tissues is incorporated and studied in the models. The simulations continue with FSI analysis of a patient-specific CT scanned geometry of an old individual. Finally, inspiring of the statistic results of mortality rates in Stanford type B dissection, three models of fenestrated dissection sac is studied and discussed. Applying the developed boundary condition, an alternative hypothesis is proposed by the author with respect to the decrease in mortality rates in patients with fenestrations.
Resumo:
Multiple lipoxygenase sequence alignments and structural modeling of the enzyme/substrate interaction of the cucumber lipid body lipoxygenase suggested histidine 608 as the primary determinant of positional specificity. Replacement of this amino acid by a less-space-filling valine altered the positional specificity of this linoleate 13-lipoxygenase in favor of 9-lipoxygenation. These alterations may be explained by the fact that H608V mutation may demask the positively charged guanidino group of R758, which, in turn, may force an inverse head-to-tail orientation of the fatty acid substrate. The R758L+H608V double mutant exhibited a strongly reduced reaction rate and a random positional specificity. Trilinolein, which lacks free carboxylic groups, was oxygenated to the corresponding (13S)-hydro(pero)xy derivatives by both the wild-type enzyme and the linoleate 9-lipoxygenating H608V mutant. These data indicate the complete conversion of a linoleate 13-lipoxygenase to a 9-lipoxygenating species by a single point mutation. It is hypothesized that H608V exchange may alter the orientation of the substrate at the active site and/or its steric configuration in such a way that a stereospecific dioxygen insertion at C-9 may exclusively take place.
Resumo:
Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.