970 resultados para Intelligent Transportation Systems,Intelligent Traffic Lights,GLOSA,V2X,traffic signal optimization
Resumo:
In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.
Resumo:
After nearly 80 years since the construction of its core, represented today by the city's central area, Londrina, located in the state of Parana, has the appearance of a new city but its features and trends of planning policies depict the bad examples of Brazilian cities. With a booming urban growth, from north to south of the county, the urban interstices represented by big voids in the middle of the city created speculation and the concept of an ideal city slowly disappeared. With a metropolitan appearance and, at the same time, with small town aspects, Londrina stands out as an automobile-oriented city, a fact that has impacted the livelihood of the population, generating environmental impacts for all social classes. This paper discusses how the form of occupation in Londrina, characterized by the sprawl phenomenon and its relation to car preference as a mode of transportation has generated urban environmental impacts. It was concluded that the choice of using cars in Londrina, as well in other medium-sized Brazilian cities studied by the comparative method, has increased and has generated bottlenecks in traffic. As a consequence, there is a constant expropriation of properties for widening roads and at the same time, the presence of various densities and urban voids that form an uneven urban space and an obstacle to efficient urban planning. © 2012 WIT Press.
Resumo:
Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.
Resumo:
Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.
Resumo:
This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.
Resumo:
Assunto bastante abordado quando se trata de Sistemas Inteligentes de Transportes (ITS), a identificação veicular - utilizada em grande parte das aplicações de ITS deve ser entendida como um conjunto de recursos de hardware, software e telecomunicações, que interagem para atingir, do ponto de vista funcional, o objetivo de, conseguir extrair e transmitir, digitalmente, a identidade de um veículo. É feita tanto por sistemas que transmitem e recebem uma identidade digital quanto por sistemas que, instalados na infraestrutura da via, são capazes de reconhecer a placa dos veículos circulantes. Quando se trata da identificação automática por meio do reconhecimento da placa veicular, os estudos têm se concentrado sobremaneira nas tecnologias de processamento de imagens, não abordando - em sua maioria - uma visão sistêmica, necessária para compreender de maneira mais abrangente todas as variáveis que podem interferir na eficácia da identificação. Com o objetivo de contribuir para melhor entender e utilizar os sistemas de reconhecimento automático de placas veiculares, este trabalho propõe um modelo sistêmico, em camadas, para representar seus componentes. Associada a esse modelo, propõe uma classificação para os diversos tipos de falhas que podem prejudicar seu desempenho. Uma análise desenvolvida com resultados obtidos em testes realizados em campo com sistemas de identificação de placas voltados à fiscalização de veículos aponta resultados relevantes e limitações para obter correlações entre variáveis, em função dos diversos fatores que podem influenciar os resultados. Algumas entrevistas realizadas apontam os tipos de falhas que ocorrem com mais frequência durante a operação desses sistemas. Finalmente, este trabalho propõe futuros estudos e apresenta um glossário de termos, que poderá ser útil a novos pesquisadores.
Resumo:
Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RS S), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Wyoming Highway Patrol, Commercial Carrier Section, Cheyenne
Resumo:
Federal Highway Administration, Arlington, Va.
Resumo:
Federal Highway Administration, Office of Implementation, Washington, D.C.
Resumo:
Transportation Department, Office of Systems Engineering, Washington, D.C.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Transportation Department, Joint Program Office for Intelligent Transportation Systems, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.