948 resultados para Integrated circuit testing
Resumo:
A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.
Resumo:
This paper describes a analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a gaussian function obtained through the characteristic of the bipolar differential pair. The gaussian parameters (gain, center and width) is changed with programmable current source. Results obtained with PSPICE software is showed.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differenceβ - γ in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35μn CMOS process and VDD=3.3V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a Mode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
This paper adresses the problem on processing biological data such as cardiac beats, audio and ultrasonic range, calculating wavelet coefficients in real time, with processor clock running at frequency of present ASIC's and FPGA. The Paralell Filter Architecture for DWT has been improved, calculating wavelet coefficients in real time with hardware reduced to 60%. The new architecture, which also processes IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant multipliers. Including series memory register banks, one integrated circuit Signal Analyzer, ultrasonic range, is presented.
Resumo:
This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O presente trabalho trata da filtragem e reconstrução de sinais em frequência intermediária usando FPGA. É feito o desenvolvimento de algoritmos usando processamento digital de sinais e também a implementação dos mesmos, constando desde o projeto da placa de circuito impresso, montagem e teste. O texto apresenta um breve estudo de amostragem e reconstrução de sinais em geral. Especial atenção é dada à amostragem de sinais banda-passante e à análise de questões práticas de reconstrução de sinais em frequência intermediária. Dois sistemas de reconstrução de sinais baseados em processamento digital de sinais, mais especificamente reamostragem no domínio discreto, são apresentados e analisados. São também descritas teorias de processos de montagem e soldagem de placas eletrônicas com objetivo de definir uma metodologia de projeto, montagem e soldagem de placas eletrônicas. Tal metodologia é aplicada no projeto e manufatura do protótipo de um módulo de filtragem digital para repetidores de telefonia celular. O projeto, implementado usando FPGA, é baseado nos dois sistemas supracitados. Ao final do texto, resultados obtidos em experimentos de filtragem digital e reconstrução de sinais em frequência intermediária com o protótipo desenvolvido são apresentados.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This monograph proposes the implementation of a low cost PID controller utilizing a PIC microcontroller, and its application in a positioning system previously controlled by a dedicated integrated circuit for a positioning system. Applying the closed-loop PID control, the system instability was reduced, and its response was smoother, eliminating vibrations and mechanical wear compared to its response with the dedicated integrated circuit, which has a very limited control action. The actuator of the system is a DC motor, whose speed is controlled by the Pulse Width Modulation (PWM) technique, using a Full-Bridge circuit, allowing the shift of direction of rotation. The utilized microcontroller was the PIC16F684, which has an enhanced PWM module, with its analog converters used as reference and position feedback. The positioning sensor is a multiturn potentiometer coupled to the motor axis by gears. The possibility of programming the PID coefficients in the microcontroller, as well as the adjustment of the sampling rate, allows the implemented system achieving high level of versatility