972 resultados para Integer programming problems
Resumo:
The "Java Intelligent Tutoring System" (JITS) research project focused on designing, constructing, and determining the effectiveness of an Intelligent Tutoring System for beginner Java programming students at the postsecondary level. The participants in this research were students in the School of Applied Computing and Engineering Sciences at Sheridan College. This research involved consistently gathering input from students and instructors using JITS as it developed. The cyclic process involving designing, developing, testing, and refinement was used for the construction of JITS to ensure that it adequately meets the needs of students and instructors. The second objective in this dissertation determined the effectiveness of learning within this environment. The main findings indicate that JITS is a richly interactive ITS that engages students on Java programming problems. JITS is equipped with a sophisticated personalized feedback mechanism that models and supports each student in his/her learning style. The assessment component involved 2 main quantitative experiments to determine the effectiveness of JITS in terms of student performance. In both experiments it was determined that a statistically significant difference was achieved between the control group and the experimental group (i.e., JITS group). The main effect for Test (i.e., pre- and postiest), F( l , 35) == 119.43,p < .001, was qualified by a Test by Group interaction, F( l , 35) == 4.98,p < .05, and a Test by Time interaction, F( l , 35) == 43.82, p < .001. Similar findings were found for the second experiment; Test by Group interaction revealed F( 1 , 92) == 5.36, p < .025. In both experiments the JITS groups outperformed the corresponding control groups at posttest.
Resumo:
L’industrie forestière est un secteur qui, même s’il est en déclin, se trouve au cœur du débat sur la mondialisation et le développement durable. Pour de nombreux pays tels que le Canada, la Suède et le Chili, les objectifs sont de maintenir un secteur florissant sans nuire à l’environnement et en réalisant le caractère fini des ressources. Il devient important d’être compétitif et d’exploiter de manière efficace les territoires forestiers, de la récolte jusqu’à la fabrication des produits aux usines, en passant par le transport, dont les coûts augmentent rapidement. L’objectif de ce mémoire est de développer un modèle de planification tactique/opérationnelle qui permet d’ordonnancer les activités pour une année de récolte de façon à satisfaire les demandes des usines, sans perdre de vue le transport des quantités récoltées et la gestion des inventaires en usine. L’année se divise en 26 périodes de deux semaines. Nous cherchons à obtenir les horaires et l’affectation des équipes de récolte aux blocs de coupe pour une année. Le modèle mathématique développé est un problème linéaire mixte en nombres entiers dont la structure est basée sur chaque étape de la chaine d’approvisionnement forestière. Nous choisissons de le résoudre par une méthode exacte, le branch-and-bound. Nous avons pu évaluer combien la résolution directe de notre problème de planification était difficile pour les instances avec un grand nombre de périodes. Cependant l’approche des horizons roulants s’est avérée fructueuse. Grâce à elle en une journée, il est possible de planifier les activités de récolte des blocs pour l’année entière (26 périodes).
Resumo:
Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
Nous étudions la gestion de centres d'appels multi-compétences, ayant plusieurs types d'appels et groupes d'agents. Un centre d'appels est un système de files d'attente très complexe, où il faut généralement utiliser un simulateur pour évaluer ses performances. Tout d'abord, nous développons un simulateur de centres d'appels basé sur la simulation d'une chaîne de Markov en temps continu (CMTC), qui est plus rapide que la simulation conventionnelle par événements discrets. À l'aide d'une méthode d'uniformisation de la CMTC, le simulateur simule la chaîne de Markov en temps discret imbriquée de la CMTC. Nous proposons des stratégies pour utiliser efficacement ce simulateur dans l'optimisation de l'affectation des agents. En particulier, nous étudions l'utilisation des variables aléatoires communes. Deuxièmement, nous optimisons les horaires des agents sur plusieurs périodes en proposant un algorithme basé sur des coupes de sous-gradients et la simulation. Ce problème est généralement trop grand pour être optimisé par la programmation en nombres entiers. Alors, nous relaxons l'intégralité des variables et nous proposons des méthodes pour arrondir les solutions. Nous présentons une recherche locale pour améliorer la solution finale. Ensuite, nous étudions l'optimisation du routage des appels aux agents. Nous proposons une nouvelle politique de routage basé sur des poids, les temps d'attente des appels, et les temps d'inoccupation des agents ou le nombre d'agents libres. Nous développons un algorithme génétique modifié pour optimiser les paramètres de routage. Au lieu d'effectuer des mutations ou des croisements, cet algorithme optimise les paramètres des lois de probabilité qui génèrent la population de solutions. Par la suite, nous développons un algorithme d'affectation des agents basé sur l'agrégation, la théorie des files d'attente et la probabilité de délai. Cet algorithme heuristique est rapide, car il n'emploie pas la simulation. La contrainte sur le niveau de service est convertie en une contrainte sur la probabilité de délai. Par après, nous proposons une variante d'un modèle de CMTC basé sur le temps d'attente du client à la tête de la file. Et finalement, nous présentons une extension d'un algorithme de coupe pour l'optimisation stochastique avec recours de l'affectation des agents dans un centre d'appels multi-compétences.
Resumo:
Dans ce mémoire, nous abordons le problème de l’ensemble dominant connexe de cardinalité minimale. Nous nous penchons, en particulier, sur le développement de méthodes pour sa résolution basées sur la programmation par contraintes et la programmation en nombres entiers. Nous présentons, en l’occurrence, une heuristique et quelques méthodes exactes pouvant être utilisées comme heuristiques si on limite leur temps d’exécution. Nous décrivons notamment un algorithme basé sur l’approche de décomposition de Benders, un autre combinant cette dernière avec une stratégie d’investigation itérative, une variante de celle-ci utilisant la programmation par contraintes, et enfin une méthode utilisant uniquement la programmation par contraintes. Des résultats expérimentaux montrent que ces méthodes sont efficaces puisqu’elles améliorent les méthodes connues dans la littérature. En particulier, la méthode de décomposition de Benders avec une stratégie d’investigation itérative fournit les résultats les plus performants.
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
This work presents a scalable and efficient parallel implementation of the Standard Simplex algorithm in the multicore architecture to solve large scale linear programming problems. We present a general scheme explaining how each step of the standard Simplex algorithm was parallelized, indicating some important points of the parallel implementation. Performance analysis were conducted by comparing the sequential time using the Simplex tableau and the Simplex of the CPLEXR IBM. The experiments were executed on a shared memory machine with 24 cores. The scalability analysis was performed with problems of different dimensions, finding evidence that our parallel standard Simplex algorithm has a better parallel efficiency for problems with more variables than constraints. In comparison with CPLEXR , the proposed parallel algorithm achieved a efficiency of up to 16 times better
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)