972 resultados para Insulin Secretion


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Résumé large public Le glucose est une source d'énergie essentielle pour notre organisme, indispensable pour le bon fonctionnement des cellules de notre corps. Les cellules β du pancréas sont chargées de réguler l'utilisation du glucose et de maintenir la glycémie (taux de glucose dans le sang) à un niveau constant. Lorsque la glycémie augmente, ces dernières sécrètent l'insuline, une hormone favorisant l'absorption, l'utilisation et le stockage du glucose. Une sécrétion insuffisante d'insuline provoque une élévation anormale du taux de glucose dans le sang (hyperglycémie) et peut mener au développement du diabète sucré. L'insuline est sécrétée dans le sang par un mécanisme particulier appelé exocytose. Une meilleure compréhension de ce mécanisme est nécessaire dans l'espoir de trouver des nouvelles thérapies pour traiter les 170 millions de personnes atteintes de diabète sucré à travers le monde. L'implication de diverses protéines, comme les SNAREs ou Rabs a déjà été démontrée. Cependant leurs mécanismes d'action restent, à ce jour, peu compris. De plus, l'adaptation de la machinerie d'exocytose à des conditions physiopathologiques, comme l'hyperglycémie, est encore à élucider. Le but de mon travail de thèse a été de clarifier le rôle de deux protéines, Noc2 et Tomosyn, dans l'exocytose ; puis de déterminer les effets d'une exposition prolongée à un taux élevé de glucose sur l'ensemble des protéines de la machinerie d'exocytose. Noc2 est un partenaire potentiel de deux Rabs connues pour leur implication dans les dernières étapes de l'exocytose, Rab3 et Rab27. Grâce à l'étude de différents mutants de Noc2, j'ai montré que l'interaction avec Rab27 permet à la protéine de s'associer avec les organelles de la cellule β contenant l'insuline. De plus, en diminuant sélectivement l'expression de Noc2, j'ai déterminé l'importance de cette protéine pour le bon fonctionnement du processus d'exocytose et le relâchement de l'insuline. Quant à Tomosyn, une protéine interagissant avec les protéines SNAREs, j'ai démontré son importance dans la sécrétion d'insuline en diminuant de manière sélective son expression dans les cellules β. Ensuite, grâce à une combinaison d'approches moléculaires et de microscopie, j'ai mis en évidence le rôle de Tomosyn dans les dernières étapes de l'exocytose. Enfin, puisque la sécrétion d'insuline est diminuée lors d'une hyperglycémie prolongée, j'ai analysé l'adaptation de la machinerie d'exocytose à ces conditions. Ceci m'a permis de découvrir que l'expression de quatre protéines essentielles pour le processus d'exocytose, Noc2, Rab3, Rab27 et Granuphilin, est fortement diminuée lors d'une hyperglycémie chronique. L'ensemble de ces données met en évidence l'importance de Noc2 et Tomosyn dans la sécrétion d'insuline. L'inhibition, par un taux élevé de glucose, de l'expression de Noc2 et d'autres protéines indispensables pour l'exocytose suggère que ce phénomène pourrait contribuer au développement du diabète sucré. Résumé L'exocytose d'insuline, en réponse au glucose circulant dans le sang, est la fonction principale de la cellule β. Celle-ci permet de stabiliser le taux de glucose sanguin (glycémie). Le diabète de type 2 est caractérisé par une glycémie élevée due, principalement, à un défaut de sécrétion d'insuline en réponse au glucose. La compréhension des mécanismes qui contrôlent l'exocytose d'insuline est essentielle pour clarifier les causes du diabète sucré. Plusieurs composants impliqués dans ce processus ont été identifiés. Ceux-ci incluent les SNAREs Syntaxin-1, VAMP2 et SNAP25 et les GTPases Rab3 et Rab27 qui jouent un rôle dans les dernières étapes de l'exocytose. Pendant mon travail de thèse, j'ai étudié le rôle de Noc2, un des partenaires de Rab3 et Rab27, dans l'exocytose d'insuline. Nous avons déterminé que Noc2 s'associe aux granules de sécrétion d'insuline grâce à son interaction avec Rab27. La diminution de l'expression de Noc2 dans la lignée cellulaire β INS-1E, par ARN interférence, influence négativement la sécrétion d'insuline stimulée par différents sécrétagogues et prouve que cette protéine Noc2 est essentielle pour l'exocytose d'insuline. L'interaction avec Munc13, une protéine impliquée dans l'arrimage des vésicules, suggère que Noc2 participe au recrutement des granules d'insuline à la membrane plasmique. Ensuite, j'ai analysé l'adaptation de la machinerie d'exocytose à des concentrations supraphysiologiques de glucose. Le niveau d'expression de Rab3 et Rab27 et de leurs effecteurs Granuphilin/S1p4 et Noc2 est fortement diminué par une exposition prolongée des cellules β à haut glucose. L'effet observé est en relation avec l'induction de l'expression de ICER, un facteur de transcription surexprimé dans des conditions d'hyperglycémie et également dans des modèles génétiques de diabète de type 2. La surexpression de ICER dans des cellules INS-1E diminue l'expression de Rab3, Rab27, Granuphilin/Slp4 et Noc2 et par conséquent l'exocytose d'insuline. Ainsi, l'induction de ICER, après une exposition prolongée à haut glucose, régule négativement l'expression de protéines essentielles pour l'exocytose et altère la sécrétion d'insuline. Ce mécanisme pourrait contribuer au dysfonctionnement de l'exocytose d'insuline dans le diabète de type 2. Dans la dernière partie de ma thèse, j'ai investigué le rôle de la protéine Tomosyn-1 dans la formation du complexe SNARE. Cette protéine a une forte affinité pour Syntaxin-1 et contient un domaine SNARE. Tomosyn-1 est concentrée dans les régions cellulaires enrichies en granules de sécrétion. La diminution sélective de l'expression de Tomosyn-1 induit une réduction de l'exocytose stimulée par différents sécrétagogues. Cet effet est dû à un défaut de fusion des granules avec la membrane plasmique. Ceci nous indique que Tomosyn-1 intervient dans une phase importante de la préparation des vésicules à la fusion, qui est nécessaire à l'exocytose. Abstract: Insulin exocytosis from pancreatic β-cells plays a central role in blood glucose homeostasis. Diabetes mellitus is a complex metabolic disorder characterized by secretory dysfunctions in pancreatic β-cells and release of amounts of insulin that are inappropriate to maintain blood glucose concentration within normal physiological ranges. To define the causes of β-cell failure a basic understanding of the molecular mechanisms that control insulin exocytosis is essential. Some of the molecular components involved in this process have been identified, including the SNARE proteins VAMP2, Syntaxin-1 and SNAP25 and the two GTPases, Rab3 and Rab27, that regulate the final steps of insulin secretion. I first investigated the role of Noc2, a potential Rab3 and Rab27 partner, in insulin secretion. I found that Noc2 associates with Rab27 and is recruited by this GTPase on insulin- containing granules. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of the β-cell line INS-1E to respond to secretagogues, indicating that appropriate levels of the protein are essential for insulin exocytosis. I also showed that Noc2 interacts with Munc13, a protein that controls vesicle priming, suggesting a possible involvement of Noc2 in the recruitment of secretory granules at the plasma membrane. In the second part of my thesis, I investigated the adaptation of the molecular machinery of exocytosis to physiopathological conditions. I found that the expression of Rab3, Rab27 and of their effectors Granuphilin/Slp4 and Noc2 is dramatically decreased by chronic exposure of β-ce1ls to supraphysiological glucose levels. The observed glucotoxic effect is a consequence of the induction of ICER, a transcriptional repressor that is increased by prolonged hyperglycemia and in genetic models of type 2 diabetes. Overexpression of ICER reduced Granuphilin, Noc2, Rab3 and Rab27 levels and inhibited exocytosis. These results suggest that the presence of inappropriate levels of ICER diminishes the expression of a group of proteins essential for exocytosis and contributes to defective insulin release in type 2 diabetes. In the last part of my thesis, I focused my attention on the role of Tomosyn-1, a Syntaxin-1 binding protein possessing a SNARE-like motif, in the control of SNARE complex assembly. I found that Tomosyn-1 is concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of Tomosyn-1 did not affect the number of secretory granules docked at the plasma membrane but decreased their release probability, resulting in a reduction in stimulus-induced insulin exocytosis. These findings suggest that Tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis in response to insulin secretagogues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to identify early abnormalities in non-insulin-dependent diabetes mellitus (NIDDM) we determined insulin (using an assay that does not cross-react with proinsulin) and proinsulin concentrations. The proinsulin/insulin ratio was used as an indicator of abnormal ß-cell function. The ratio of the first 30-min increase in insulin to glucose concentrations following the oral glucose tolerance test (OGTT; I30-0/G30-0) was taken as an indicator of insulin secretion. Insulin resistance (R) was evaluated by the homeostasis model assessment (HOMA) method. True insulin and proinsulin were measured during a 75-g OGTT in 35 individuals: 20 with normal glucose tolerance (NGT) and without diabetes among their first-degree relatives (FDR) served as controls, and 15 with NGT who were FDR of patients with NIDDM. The FDR group presented higher insulin (414 pmol/l vs 195 pmol/l; P = 0.04) and proinsulin levels (19.6 pmol/l vs 12.3 pmol/l; P = 0.03) post-glucose load than the control group. When these groups were stratified according to BMI, the obese FDR (N = 8) showed higher fasting and post-glucose insulin levels than the obese NGT (N = 9) (fasting: 64.8 pmol/l vs 7.8 pmol/l; P = 0.04, and 60 min post-glucose: 480.6 pmol/l vs 192 pmol/l; P = 0.01). Also, values for HOMA (R) were higher in the obese FDR compared to obese NGT (2.53 vs 0.30; P = 0.075). These results show that FDR of NIDDM patients have true hyperinsulinemia (which is not a consequence of cross-reactivity with proinsulin) and hyperproinsulinemia and no dysfunction of a qualitative nature in ß-cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI) are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10). Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several human studies suggest that light-to-moderate alcohol consumption is associated with enhanced insulin sensitivity, but these studies are not free of conflicting results. To determine if ethanol-enhanced insulin sensitivity could be demonstrated in an animal model, male Wistar rats were fed a standard chow diet and received drinking water without (control) or with different ethanol concentrations (0.5, 1.5, 3, 4.5 and 7%, v/v) for 4 weeks ad libitum. Then, an intravenous insulin tolerance test (IVITT) was performed to determine insulin sensitivity. Among the ethanol groups, only the 3% ethanol group showed an increase in insulin sensitivity based on the increase of the plasma glucose disappearance rate in the IVITT (30%, P<0.05). In addition, an intravenous glucose tolerance test (IVGTT) was performed in control and 3% ethanol animals. Insulin sensitivity was confirmed in 3% ethanol rats based on the reduction of insulin secretion in the IVGTT (35%, P<0.05), despite the same glucose profile. Additionally, the 3% ethanol treatment did not impair body weight gain or plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the present study established that 3% ethanol in the drinking water for 4 weeks in normal rats is a model of increased insulin sensitivity, which can be used for further investigations of the mechanisms involved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 2 diabetes is a disorder of glucose metabolism characterized by chronic hyperglycemia. Initially type 2 diabetes is characterized by insulin resistance and impaired function of beta cells, leading progressively to insulin deficiency. Type 2 diabetes is treated with diet and other lifestyle changes, and with medication modulating e.g. insulin resistance, liver glucose production and insulin secretion. Injectable insulin is added to the treatment when lifestyle changes and other medication are insufficient to maintain adequate control of hyperglycemia. The aim of the treatment is to remove the symptoms of diabetes and to prevent late complications of diabetes. Insulin was traditionally started at hospital wards, but from the early 1990’s also in outpatient care. The first substudy of this thesis examined retrospectively initiation practices and how successfully insulin treatment was introduced in 1990 – 1996 in Southwestern Finland. This study aimed also at identifying the best methods of controlling plasma glucose. It showed that in the 1990’s the incidence of insulin treatment increased and was initiated more often in outpatient care than previously. The use of combination treatment also increased, first with sulfonylureas and later with metformin as the oral drug. In combination therapy the insulin dose was smaller than with insulin monotherapy. HbA1c improved similarly in middle-aged and older age groups. Weight increase associated with insulin initiation was smaller when combined with oral agents. A prospective insulin initiation study (1994 – 1998) tested the hypothesis that hyperglycemia (fasting and postprandial hyperglycemia) may affect the outcome of insulin initiation. The type of hyperglycemia was determined by the relation of fasting plasma glucose to HbA1c. Treatment was initiated with insulin Lente or human NPH insulin. In patients treated with insulin monotherapy twice daily the decline in HbA1c was markedly greater for postprandial than fasting hyperglycemia patients suggesting that hyperglycemia type has significance in the selection of the insulin regimen. Another insulin initiation study showed that patients with fasting hyperglycemia starting on insulin (2004-2005) were significantly more prone to overweight than patients with postprandial hyperglycemia. Irrespective of the insulin preparation (insulin NPH or insulin glargine), patients with fasting hyperglycemia had a greater weight increase compared to patients with postprandial hyperglycemia. Special attention should be paid to prevention of weight increase in these patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies have established a fimctional correlation of serotonergic and adrenergic function in the brain regions with insulin secretion in diabetic rats (Vahabzadeh et al., 1995). Administration of 5-HT”. agonist 8-OH-DPAT to conscious rats caused an increase in blood glucose level. This increase in blood glucose is due to inhibition of insulin secretion by increased circulating EPI (Chaouloff et al., 1990a; Chaouloff et al., 1990d; Chaoulo1T& Jeanrenaud, 1987). The increase in EPI is brought about by increased sympathetic stimulation. This increase can lead to increased sympatho-medullary stimulation thereby inhibiting insulin release (Bauhelal & Mir, 1993, Bauhelal & Mir, 1990a; Chaouloffet al., 1990d). Also, studies have shown that Gi protein in the liver has been decreased in diabetes which will increase gluconeogenesis and glycogenolysis thereby causing hyperglycaemia (Pennington, 1987). Serotonergic control is suggested to exert different effects on insulin secretion according to the activation of different receptor subclasses (Pontiroli et al., 1975). In addition to this mechanism, the secretion of insulin is dependent on the turnover ratio of endogenous 5-hydroxy tryptophan (5-HTP) to 5-HT in the pancreatic islets (Jance er al., 1980). The reports so far stated does not explain the complete mechanism and the subclass of 5-HT receptors whose expression regulate insulin secretion in a diabetic state. Also, there is no report of a direct regulation of insulin secretion by 5-HT from the pancreatic islets even though there are reports stating that the pancreatic islets is a rich source of 5-HT (Bird et al., 1980). Therefore, in the present study the mechanism by which 5-HT and its receptors regulate insulin secretion from pancreatic [3-cells was investigated. Our results led to the following hypotheses by which 5-HT and its receptors regulate the insulin secretion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects. Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p<0.038), higher fasting insulin concentrations (p<0.028) and higher HOMA IR (p<0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of ω-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p<0.01) and HOMA-IR (p<0.02) as compared with A/A subjects. Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of mclatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(-8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.