920 resultados para INTELLIGENCE SYSTEMS METHODOLOGY
Resumo:
Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.
Resumo:
In this work, a low alloy steel and a fabrication process were developed to produce U-Bolts for commercial vehicles. Thus, initially five types of no-heat treated steel were developed with different additions of chrome, nickel, and silicon to produce strain hardening effect during cold-forming processing of the U-Bolts, assuring the required mechanical properties. The new materials exhibited a fine perlite and ferrite microstructure due to aluminum and vanadium additions, well known as grain size refiners. The mechanical properties were evaluated in a servo-hydraulic test machine system-MTS 810 according to ASTM A370-03; E739 and E08m-00 standards. The microstructure and fractography analyses of the cold-formed steels were performed by using optical and scanning electronic microscope techniques. To evaluate the performance of the steels and the production process, fatigue tests were carried out under load control (tensile-tensile), R = 0.1 and f = 30 Hz. The Weibull statistic methodology was used for the analysis of the fatigue results. At the end of this work the 0.21% chrome content steel, Alloy 2, presented the best fatigue performance.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
An in vivo study was conducted to verify the ability of laser fluorescence (LF) to assess the activity status of occlusal caries in primary teeth, using different air-drying times. Occlusal sites (707) were examined using LF (DIAGNOdent) after air-drying for 3 s and 15 s, and the difference between readings (DIF15 s-3 s) was calculated. For concurrent validation of LF, visual criteria-Nyvad (NY) and Lesion Activity Assessment associated with the International Caries Detection and Assessment System (LAA-ICDAS)-were the reference standards for lesion activity. Histological exam using a pH-indicator dye (0.1% methyl red) was performed in 46 exfoliated/extracted teeth for criterion validation. LF readings and DIF15 s-3 s were compared using Kruskall-Wallis and Mann-Whitney tests. Receiver operating characteristic analyses were performed and validity parameters calculated, considering the caries activity assessment. Using NY, active lesions (3 s: 30.0 +/- 29.3; 15 s: 34.2 +/- 30.6) presented higher LF readings than inactive lesions (3 s: 17.0 +/- 16.3; 15 s: 19.2 +/- 17.3; p <0.05), different from LAA-ICDAS. Active cavitated caries resulted in higher LF readings (3 s: 50.3 +/- 3.5; 15 s: 54.7 +/- 30.2) than inactive cavitated caries (3 s: 19.9 +/- 16.3; 15 s: 22.8 +/- 16.8). Therefore, LF can distinguish cavitated active and inactive lesions classified by NY, but not by LAA-ICDAS; however, this difference might be related to the visual system rather than to LF. The air-drying time could be an alternative to improve the caries activity assessment; however, longer air-drying time is suggested to be tested subsequently. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3463007]
Resumo:
This work presents a thermoeconomic optimization methodology for the analysis and design of energy systems. This methodology involves economic aspects related to the exergy conception, in order to develop a tool to assist the equipment selection, operation mode choice as well as to optimize the thermal plants design. It also presents the concepts related to exergy in a general scope and in thermoeconomics which combines the thermal sciences principles (thermodynamics, heat transfer, and fluid mechanics) and the economic engineering in order to rationalize energy systems investment decisions, development and operation. Even in this paper, it develops a thermoeconomic methodology through the use of a simple mathematical model, involving thermodynamics parameters and costs evaluation, also defining the objective function as the exergetic production cost. The optimization problem evaluation is developed for two energy systems. First is applied to a steam compression refrigeration system and then to a cogeneration system using backpressure steam turbine. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
Purpose - The purpose of this paper is to examine whether the level of logistics information systems (LIS) adoption in manufacturing companies is influenced by organizational profile variables, such as the company`s size, the nature of its operations and their subsectors. Design/methodology/approach - A review of the mainstream literature on US was carried out to identify the factors influencing the adoption of such information systems and also some research gaps. The empirical study`s strategy is based on a survey research in Brazilian manufacturing firms from the capital goods industry. Data collected were analyzed through Kruskall-Wallis and Mann Whitney`s non-parametric tests. Findings - The analysis indicates that characteristics such as the size of companies and the nature of their operations influence the levels of LIS adoption, whilst comparisons regarding the subsectors appeared to be of little influence. Originality/value - This is the first known study to examine the influence of organizational profiles such as size, nature of operations and subsector on the level of US adoption in manufacturing companies. Moreover, it is unique in portraying the Brazilian scenario on this topic and addressing the adoption of seven types of LIS in a single study.
Resumo:
One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.
Resumo:
The most-used refrigeration system is the vapor-compression system. In this cycle, the compressor is the most complex and expensive component, especially the reciprocating semihermetic type, which is often used in food product conservation. This component is very sensitive to variations in its operating conditions. If these conditions reach unacceptable levels, failures are practically inevitable. Therefore, maintenance actions should be taken in order to maintain good performance of such compressors and to avoid undesirable stops of the system. To achieve such a goal, one has to evaluate the reliability of the system and/or the components. In this case, reliability means the probability that some equipment cannot perform their requested functions for an established time period, under defined operating conditions. One of the tools used to improve component reliability is the failure mode and effect analysis (FMEA). This paper proposes that the methodology of FMEA be used as a tool to evaluate the main failures found in semihermetic reciprocating compressors used in refrigeration systems. Based on the results, some suggestions for maintenance are addressed.
Resumo:
Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.
Resumo:
Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Vessel dynamic positioning (DP) systems are based on conventional PID-type controllers and an extended Kalman filter. However, they present a difficult tuning procedure, and the closed-loop performance varies with environmental or loading conditions since the dynamics of the vessel are eminently nonlinear. Gain scheduling is normally used to address the nonlinearity of the system. To overcome these problems, a sliding mode control was evaluated. This controller is robust to variations in environmental and loading conditions, it maintains performance and stability for a large range of conditions, and presents an easy tuning methodology. The performance of the controller was evaluated numerically and experimentally in order to address its effectiveness. The results are compared with those obtained from conventional PID controller. (c) 2010 Elsevier Ltd. All rights reserved.