978 resultados para INDUCED GENOMIC INSTABILITY
Resumo:
Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Mutations in components of the Mre 11/Rad50/Nbs1 complex give rise to genetic disorders characterized by neurological abnormalities, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Evidence exists that this complex associates with chromatin during DNA replication and acts as a sensor of double strand breaks (dsbs) in DNA after exposure to radiation. A series of recent reports provides additional support that the complex senses breaks in DNA and relays this information to ATM, mutated in ataxia-telangiectasia (A-T), which in turn activates pathways for cell cycle checkpoint activation. Paradoxically members of the Mre11 complex are also downstream of ATM in these pathways. Here, Lavin attempts to make sense of this sensing mechanism with reference to a series of recent reports on the topic. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM-/- in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM-/- cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM-/- cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.
Resumo:
DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangietasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
BRCA1 is a tumor suppressor that functions in controlling cell growth and maintaining genomic stability. BRCA1 has also been implicated in telomere maintenance through its ability to regulate the transcription of hTERT, the catalytic subunit of telomerase, resulting in telomere shortening, and to colocalize with the telomere-binding protein TRF1. The high incidence of nonreciprocal translocations in tumors arising from BRCA1 mutation carriers and Brca1-null mice also raises the possibility that BRCA1 plays a role in telomere protection. To date, however, the consequences for telomere status of disrupting BRCA1 have not been reported. To examine the role of BRCA1 in telomere regulation, we have expressed a dominant-negative mutant of BRCA1 (trBRCA1), known to disrupt multiple functions of BRCA1, in telomerase-positive mammary epithelial cells (SVCT) and telomerase-negative ALT cells (GM847). In SVCT cells, expression of trBRCA1 resulted in an increased incidence of anaphase bridges and in an increase in telomere length, but no change in telomerase activity. In GM847 cells, trBRCA1 also increased anaphase bridge formation but did not induce any change in telomere length. BRCA1 colocalized with TRF2 in telomerase-positive cells and with a small subset of ALT-associated PML bodies (APBs) in ALT cells. Together, these results raise the possibility that BRCA1 could play a role in telomere protection and suggest a potential mechanism for one of the phenotypes of BRCA1 deficient cells. (c) 2005 Wiley-Liss, Inc.
Resumo:
Background: Women with germline BRCA1 mutations have a high lifetime risk of breast cancer, with the only available risk-reduction strategies being risk-reducing surgery or chemoprevention. These women predominantly develop triple-negative breast cancers; hence, it is unlikely that selective estrogen receptor modulators (serms) will reduce the risk of developing cancer, as these have not been shown to reduce the incidence of estrogen receptor–negative breast cancers. Preclinical data from our laboratory suggest that exposure to estrogen and its metabolites is capable of causing dna double-strand breaks (dsbs) and thus driving genomic instability, an early hallmark of BRCA1-related breast cancer. Therefore, an approach that lowers circulating estrogen levels and reduces estrogen metabolite exposure may prove a successful chemopreventive strategy.
Aims: To provide proof of concept of the hypothesis that the combination of luteinizing-hormone releasing-hormone agonists (lhrha) and aromatase inhibitors (ais) can suppress circulating levels of estrogen and its metabolites in BRCA1 mutation carriers, thus reducing estrogen metabolite levels in breast cells, reducing dna dsbs, and potentially reducing the incidence of breast cancer.
Methods: 12 Premenopausal BRCA1 mutation carriers will undergo baseline ultrasound-guided breast core biopsy and plasma and urine sampling. Half the women will be treated for 3 months with combination goserelin (lhrha) plus anastrazole (ai), and the remainder with tamoxifen (serm) before repeat tissue, plasma, and urine sampling. After a 1-month washout period, groups will cross over for a further 3 months treatment before final biologic sample collection. Tissue, plasma, and urine samples will be examined using a combination of immunohistochemistry, comet assays, and ultrahigh performance liquid chromatography tandem mass spectrometry to assess the impact of lhrha plus ai compared with serm on levels of dna damage, estrogens, and genotoxic estrogen metabolites. Quality of life will also be assessed during the study.
Results: This trial is currently ongoing.
Resumo:
Tumor genomic instability and selective treatment pressures result in clonal disease evolution; molecular stratification for molecularly targeted drug administration requires repeated access to tumor DNA. We hypothesized that circulating plasma DNA (cpDNA) in advanced cancer patients is largely derived from tumor, has prognostic utility, and can be utilized for multiplex tumor mutation sequencing when repeat biopsy is not feasible. We utilized the Sequenom MassArray System and OncoCarta panel for somatic mutation profiling. Matched samples, acquired from the same patient but at different time points were evaluated; these comprised formalin-fixed paraffin-embedded (FFPE) archival tumor tissue (primary and/or metastatic) and cpDNA. The feasibility, sensitivity, and specificity of this high-throughput, multiplex mutation detection approach was tested utilizing specimens acquired from 105 patients with solid tumors referred for participation in Phase I trials of molecularly targeted drugs. The median cpDNA concentration was 17 ng/ml (range: 0.5-1600); this was 3-fold higher than in healthy volunteers. Moreover, higher cpDNA concentrations associated with worse overall survival; there was an overall survival (OS) hazard ratio of 2.4 (95% CI 1.4, 4.2) for each 10-fold increase in cpDNA concentration and in multivariate analyses, cpDNA concentration, albumin, and performance status remained independent predictors of OS. These data suggest that plasma DNA in these cancer patients is largely derived from tumor. We also observed high detection concordance for critical 'hot-spot' mutations (KRAS, BRAF, PIK3CA) in matched cpDNA and archival tumor tissue, and important differences between archival tumor and cpDNA. This multiplex sequencing assay can be utilized to detect somatic mutations from plasma in advanced cancer patients, when safe repeat tumor biopsy is not feasible and genomic analysis of archival tumor is deemed insufficient. Overall, circulating nucleic acid biomarker studies have clinically important multi-purpose utility in advanced cancer patients and further studies to pursue their incorporation into the standard of care are warranted.
RECQ5 promotes recombination and mutagenesis at targeted nicks through disruption of RAD51 filaments
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Styrene is a building-block of several compounds used in a wide array of materials and products. The most important human exposure to this substance occurs in industrial settings, especially among reinforced-plastics industry workers. The effect of occupational exposure to styrene on cytogenetics biomarkers has been previously reviewed with positive association observed for chromosomal aberrations, and inconclusive data for the micronucleus assay. Some limitations were noted in those studies, including inadequate exposure assessment and poor epidemiological design. Furthermore, in earlier studies micronuclei frequency was measured with protocols not as reliable as cytokinesis-block micronucleus (CBMN) assay. Aim of the present systematic review and meta-analysis is to investigate genomic instability and DNA damage as measured by the CBMN assay in lymphocytes of subjects exposed to styrene. A total of 11 studies published between 2004 and 2012 were included in the meta-analysis encompassing 479 styrene-exposed workers and 510 controls. The quality of each study was estimated by a quality scoring system which ranked studies according to the consideration of major confounders, exposure characterization, and technical parameters. An overall increase of micronuclei frequencies was found in styrene-exposure workers when compared to referents (meta-MR 1.34; 95% CI 1.18–1.52), with significant increases achieved in six individual studies. The consistency of results in individual studies, the independence of this result from major confounding factors and from the quality of the study strengthens the reliability of risk estimates and supports the use of the CBMN assay in monitoring genetic risk in styrene workers.
Resumo:
Loading of spinal motion segment units alters biomechanical properties by modifying flexibility and range of motion. This study utilizes angular displacement due to an applied bending moment to assess biomechanical function during high-magnitude and prolonged compressive loading of ovine lumbar motion segments. High compressive loads, representative of physiological lifestyle and occupational behaviors, appear to limit fluid recovery of the intervertebral disc, thereby modifying spinal flexibility and increasing spinal instability. Intermittent extensions, or backwards bending movements, may provide a protective effect against the load-induced spinal instability. This study contributes a greater understanding of the effects of load history on the function and health of the lumbar spine. Findings may inform future efforts investigating adjustments in spinal posture to preserve or promote the recovery of lumbar spinal biomechanics.
Resumo:
Dissertação de Mestrado, Oncobiologia – Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
Rainfall has been identified as one of the main causes for embankment failures in areas where high annual rainfall is experienced. The inclination of the embankment slope is important for its stability during rainfall. In this study, instrumented model embankments were subjected to artificial rainfalls to investigate the effects of the slope inclination on their stability. The results of the study suggested that when the slope inclination is greater than the friction angle of the soil, the failure is initiated by the loss of soil suction and when it is smaller than the friction angle of the soil, the failure is initiated by the positive pore water pressure developed at the toe of the slope. Further, slopes become more susceptible to sudden collapse during rainfall as the slope angle increases.
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.