982 resultados para Hydrological Conditions
Resumo:
This program of research examines the experience of chronic pain in a community sample. While, it is clear that like patient samples, chronic pain in non-patient samples is also associated with psychological distress and physical disability, the experience of pain across the total spectrum of pain conditions (including acute and episodic pain conditions) and during the early course of chronic pain is less clear. Information about these aspects of the pain experience is important because effective early intervention for chronic pain relies on identification of people who are likely to progress to chronicity post-injury. A conceptual model of the transition from acute to chronic pain was proposed by Gatchel (1991a). In brief, Gatchel’s model describes three stages that individuals who have a serious pain experience move through, each with worsening psychological dysfunction and physical disability. The aims of this program of research were to describe the experience of pain in a community sample in order to obtain pain-specific data on the problem of pain in Queensland, and to explore the usefulness of Gatchel’s Model in a non-clinical sample. Additionally, five risk factors and six protective factors were proposed as possible extensions to Gatchel’s Model. To address these aims, a prospective longitudinal mixed-method research design was used. Quantitative data was collected in Phase 1 via a comprehensive postal questionnaire. Phase 2 consisted of a follow-up questionnaire 3 months post-baseline. Phase 3 consisted of semi-structured interviews with a subset of the original sample 12 months post follow-up, which used qualitative data to provide a further in-depth examination of the experience and process of chronic pain from respondents’ point of view. The results indicate chronic pain is associated with high levels of anxiety and depressive symptoms. However, the levels of disability reported by this Queensland sample were generally lower than those reported by clinical samples and consistent with disability data reported in a New South Wales population-based study. With regard to the second aim of this program of research, while some elements of the pain experience of this sample were consistent with that described by Gatchel’s Model, overall the model was not a good fit with the experience of this non-clinical sample. The findings indicate that passive coping strategies (minimising activity), catastrophising, self efficacy, optimism, social support, active strategies (use of distraction) and the belief that emotions affect pain may be important to consider in understanding the processes that underlie the transition to and continuation of chronic pain.
Resumo:
Building integrated living systems (BILS), such as green roofs and living walls, could mitigate many of the challenges presented by climate change and biodiversity protection. However, few if any such systems have been constructed, and current tools for evaluating them are limited, especially under Australian subtropical conditions. BILS are difficult to assess, because living systems interact with complex, changing and site-specific social and environmental conditions. Our past research in design for eco-services has confirmed the need for better means of assessing the ecological values of BILS - let alone better models for assessing their thermal and hydrological performance. To address this problem, a research project is being developed jointly by researchers at the Central Queensland University (CQ University) and the Queensland University of Technology (QUT), along with industry collaborators. A mathematical model under development at CQ University will be applied and tested to determine its potential for predicting their complex, dynamic behaviour in different contexts. However, the paper focuses on the work at QUT. The QUT school of design is generating designs for living walls and roofs that provide a range of ecosystem goods and services, or ‘eco-services’, for a variety of micro-climates and functional contexts. The research at QUT aims to develop appropriate designs, virtual prototypes and quantitative methods for assessing the potential multiple benefits of BILS in subtropical climates. It is anticipated that the CQ University model for predicting thermal behaviour of living systems will provide a platform for the integration of ecological criteria and indicators. QUT will also explore means to predict and measure the value of eco-services provided by the systems, which is still largely uncharted territory. This research is ultimately intended to facilitate the eco-retrofitting of cities to increase natural capital and urban resource security - an essential component of sustainability. The talk will present the latest range of multifunctional, eco-productive living walls, roofs and urban space frames and their eco-services.
Resumo:
PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.
Resumo:
Purpose: To evaluate the on-road driving performance of persons with homonymous hemianopia or quadrantanopia in comparison to age-matched controls with normal visual fields. Methods: Participants were 22 hemianopes and eight quadrantanopes (mean age 53 years) and 30 persons with normal visual fields (mean age 52 years) and were either current drivers or aiming to resume driving. All participants completed a battery of tests of vision (ETDRS visual acuity, Pelli-Robson letter contrast sensitivity, Humphrey visual fields), cognitive tests (trials A and B, Mini Mental State Examination, Digit Symbol Substitution) and an on-road driving assessment. Driving performance was assessed in a dual-brake vehicle with safety monitored by a certified driving rehabilitation specialist. Backseat evaluators masked to the clinical characteristics of participants independently rated driving performance along a 22.7 kilometre route involving urban and interstate driving. Results: Seventy-three per cent of the hemianopes, 88 per cent of quadrantanopes and all of the drivers with normal fields received safe driving ratings. Those hemianopic and quadrantanopic drivers rated as unsafe tended to have problems with maintaining appropriate lane position, steering steadiness and gap judgment compared to controls. Unsafe driving was associated with slower visual processing speed and impairments in contrast sensitivity, visual field sensitivity and executive function. Conclusions: Our findings suggest that some drivers with hemianopia or quadrantanopia are capable of safe driving performance, when compared to those of the same age with normal visual fields. This finding has important implications for the assessment of fitness to drive in this population.
Resumo:
The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.
Resumo:
The Inflatable Rescue Boat (IRB) is arguably the most effective rescue tool used by the Australian surf lifesavers. The exceptional features of high mobility and rapid response have enabled it to become an icon on Australia's popular beaches. However, the IRB's extensive use within an environment that is as rugged as it is spectacular, has led it to become a danger to those who risk their lives to save others. Epidemiological research revealed lower limb injuries to be predominant, particularly the right leg. The common types of injuries were fractures and dislocations, as well as muscle or ligament strains and tears. The concern expressed by Surf Life Saving Queensland (SLSQ) and Surf Life Saving Australia (SLSA) led to a biomechanical investigation into this unique and relatively unresearched field. The aim of the research was to identify the causes of injury and propose processes that may reduce the instances and severity of injury to surf lifesavers during IRB operation. Following a review of related research, a design analysis of the craft was undertaken as an introduction to the craft, its design and uses. The mechanical characteristics of the vessel were then evaluated and the accelerations applied to the crew in the IRB were established through field tests. The data were then combined and modelled in the 3-D mathematical modelling and simulation package, MADYMO. A tool was created to compare various scenarios of boat design and methods of operation to determine possible mechanisms to reduce injuries. The results of this study showed that under simulated wave loading the boats flex around a pivot point determined by the position of the hinge in the floorboard. It was also found that the accelerations experienced by the crew exhibited similar characteristics to road vehicle accidents. Staged simulations indicated the attributes of an optimum foam in terms of thickness and density. Likewise, modelling of the boat and crew produced simulations that predicted realistic crew response to tested variables. Unfortunately, the observed lack of adherence to the SLSA footstrap Standard has impeded successful epidemiological and modelling outcomes. If uniformity of boat setup can be assured then epidemiological studies will be able to highlight the influence of implementing changes to the boat design. In conclusion, the research provided a tool to successfully link the epidemiology and injury diagnosis to the mechanical engineering design through the use of biomechanics. This was a novel application of the mathematical modelling software MADYMO. Other craft can also be investigated in this manner to provide solutions to the problem identified and therefore reduce risk of injury for the operators.
Resumo:
Speaker verification is the process of verifying the identity of a person by analysing their speech. There are several important applications for automatic speaker verification (ASV) technology including suspect identification, tracking terrorists and detecting a person’s presence at a remote location in the surveillance domain, as well as person authentication for phone banking and credit card transactions in the private sector. Telephones and telephony networks provide a natural medium for these applications. The aim of this work is to improve the usefulness of ASV technology for practical applications in the presence of adverse conditions. In a telephony environment, background noise, handset mismatch, channel distortions, room acoustics and restrictions on the available testing and training data are common sources of errors for ASV systems. Two research themes were pursued to overcome these adverse conditions: Modelling mismatch and modelling uncertainty. To directly address the performance degradation incurred through mismatched conditions it was proposed to directly model this mismatch. Feature mapping was evaluated for combating handset mismatch and was extended through the use of a blind clustering algorithm to remove the need for accurate handset labels for the training data. Mismatch modelling was then generalised by explicitly modelling the session conditions as a constrained offset of the speaker model means. This session variability modelling approach enabled the modelling of arbitrary sources of mismatch, including handset type, and halved the error rates in many cases. Methods to model the uncertainty in speaker model estimates and verification scores were developed to address the difficulties of limited training and testing data. The Bayes factor was introduced to account for the uncertainty of the speaker model estimates in testing by applying Bayesian theory to the verification criterion, with improved performance in matched conditions. Modelling the uncertainty in the verification score itself met with significant success. Estimating a confidence interval for the "true" verification score enabled an order of magnitude reduction in the average quantity of speech required to make a confident verification decision based on a threshold. The confidence measures developed in this work may also have significant applications for forensic speaker verification tasks.