942 resultados para Hybrid methods
Resumo:
Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.
Resumo:
INTRODUCTION: Hypoplastic left heart syndrome (HLHS) is a major cause of cardiac death during the first week of life. The hybrid approach is a reliable, reproducible treatment option for patients with HLHS. Herein we report our results using this approach, focusing on its efficacy, safety and late outcome. METHODS: We reviewed prospectively collected data on patients treated for HLHS using a hybrid approach between July 2007 and September 2014. RESULTS: Nine patients had a stage 1 hybrid procedure, with seven undergoing a comprehensive stage 2 procedure. One patient completed the Fontan procedure. Five patients underwent balloon atrial septostomy after the hybrid procedure; in three patients, a stent was placed across the atrial septum. There were three deaths: two early after the hybrid procedure and one early after stage two palliation. Overall survival was 66%. CONCLUSIONS: In our single-center series, the hybrid approach for HLHS yields intermediate results comparable to those of the Norwood strategy. The existence of dedicated teams for the diagnosis and management of these patients, preferably in high-volume centers, is of major importance in this condition.
Resumo:
Les cadriciels et les bibliothèques sont indispensables aux systèmes logiciels d'aujourd'hui. Quand ils évoluent, il est souvent fastidieux et coûteux pour les développeurs de faire la mise à jour de leur code. Par conséquent, des approches ont été proposées pour aider les développeurs à migrer leur code. Généralement, ces approches ne peuvent identifier automatiquement les règles de modification une-remplacée-par-plusieurs méthodes et plusieurs-remplacées-par-une méthode. De plus, elles font souvent un compromis entre rappel et précision dans leur résultats en utilisant un ou plusieurs seuils expérimentaux. Nous présentons AURA (AUtomatic change Rule Assistant), une nouvelle approche hybride qui combine call dependency analysis et text similarity analysis pour surmonter ces limitations. Nous avons implanté AURA en Java et comparé ses résultats sur cinq cadriciels avec trois approches précédentes par Dagenais et Robillard, M. Kim et al., et Schäfer et al. Les résultats de cette comparaison montrent que, en moyenne, le rappel de AURA est 53,07% plus que celui des autre approches avec une précision similaire (0,10% en moins).
Resumo:
Pour respecter les droits auteur, la version electronique de cette thèse a été dépouillée de ses documents visuels et audio-visuels. La version intégrale de la thèse a été déposée au Service de la gestion des documents et des archives de l'Université de Montréal.
Resumo:
Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application. Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes. La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème. La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement.
Resumo:
Targeted peptide methods generally use HPLC-MS/MRM approaches. Although dependent on the instrumental resolution, interferences may occur while performing analysis of complex biological matrices. HPLC-MS/MRM3 is a technique, which provides a significantly better selectivity, compared with HPLC-MS/MRM assay. HPLC-MS/MRM3 allows the detection and quantitation by enriching standard MRM with secondary product ions that are generated within the linear ion trap. Substance P (SP) and neurokinin A (NKA) are tachykinin peptides playing a central role in pain transmission. The objective of this study was to verify whether HPLC-HPLCMS/ MRM3 could provide significant advantages over a more traditional HPLC-MS/MRM assay for the quantification of SP and NKA in rat spinal cord. The results suggest that reconstructed MRM3 chromatograms display significant improvements with the nearly complete elimination of interfering peaks but the sensitivity (i.e. signal-to-noise ratio) was severely reduced. The precision (%CV) observed was between 3.5% - 24.1% using HPLC-MS/MRM and in the range of 4.3% - 13.1% with HPLC-MS/MRM3, for SP and NKA. The observed accuracy was within 10% of the theoretical concentrations tested. HPLC-MS/MRM3 may improve the assay sensitivity to detect difference between samples by reducing significantly the potential of interferences and therefore reduce instrumental errors.
Resumo:
There is no baseline data available at present on the nature of various diseases that occur in a orchid population, under cultivation, in any commercial orchid farm maintained by small scale entrepreneurs who invest considerable amount of money, effort and time. The available data on type of disease symptoms, causative agent, , nature of pathogens, as to bacteria or ftmgi or any other biological agents, and their source, appropriate and effective control measures could not be devised, for large scale implementation and effective management, although arbitrary methods are being practiced by very few farms. Further influence of seasonal variations and environmental factors on disease outbreak is also not scientifically documented and statistically verified as to their authenticity. In this context, the primary objective of the present study was to create a data bank on the following aspects 1. Occurrence of different disease symptoms in Dendrobium hybrid over a period of one year covering all seasons 2. Variations in the environmental parameters at the orchid farms 3. Variations in the characteristics of water used for irrigation in the selected orchid farm 4. Microbial population associated with the various disease symptoms 5. Isolation and identification of bacteria isolated from diseased plants 6. Statistical treatment of the quantitative data and evolving statistical model
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
A novel and fast technique for cryptographic applications is designed and developed using the symmetric key algorithm “MAJE4” and the popular asymmetric key algorithm “RSA”. The MAJE4 algorithm is used for encryption / decryption of files since it is much faster and occupies less memory than RSA. The RSA algorithm is used to solve the problem of key exchange as well as to accomplish scalability and message authentication. The focus is to develop a new hybrid system called MARS4 by combining the two cryptographic methods with an aim to get the advantages of both. The performance evaluation of MARS4 is done in comparison with MAJE4 and RSA.
Resumo:
DNA sequence representation methods are used to denote a gene structure effectively and help in similarities/dissimilarities analysis of coding sequences. Many different kinds of representations have been proposed in the literature. They can be broadly classified into Numerical, Graphical, Geometrical and Hybrid representation methods. DNA structure and function analysis are made easy with graphical and geometrical representation methods since it gives visual representation of a DNA structure. In numerical method, numerical values are assigned to a sequence and digital signal processing methods are used to analyze the sequence. Hybrid approaches are also reported in the literature to analyze DNA sequences. This paper reviews the latest developments in DNA Sequence representation methods. We also present a taxonomy of various methods. A comparison of these methods where ever possible is also done
Resumo:
The development of methods to economically synthesize single wire structured multiferroic systems with room temperature spin−charge coupling is expected to be important for building next-generation multifunctional devices with ultralow power consumption. We demonstrate the fabrication of a single nanowire multiferroic system, a new geometry, exhibiting room temperature magnetodielectric coupling. A coaxial nanotube/nanowire heterostructure of barium titanate (BaTiO3, BTO) and cobalt (Co) has been synthesized using a template-assisted method. Room temperature ferromagnetism and ferroelectricity were exhibited by this coaxial system, indicating the coexistence of more than one ferroic interaction in this composite system
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Resumo:
In this work a hybrid technique that includes probabilistic and optimization based methods is presented. The method is applied, both in simulation and by means of real-time experiments, to the heating unit of a Heating, Ventilation Air Conditioning (HVAC) system. It is shown that the addition of the probabilistic approach improves the fault diagnosis accuracy.
Resumo:
In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.