790 resultados para High-Strength concrete
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Utilização de resíduos de cinza de casca de arroz e borracha de pneus em concreto de alto desempenho
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O concreto, material de composição heterogênea e complexa, é o principal insumo em construções. Do ponto de vista estrutural, ele tem como propriedade principal sua resistência. O estudo do comportamento do concreto, baseado em estudos conceituais da resistência granular, pode conduzir a um projeto estrutural mais seguro e de melhor utilização do material. Este trabalho expõe os resultados de um estudo conduzido para avaliar os efeitos do tipo, tamanho e teor de agregado graúdo no módulo de deformação do concreto de alta resistência. A mistura de concreto estudada contém agregados de basalto e de granito com dimensões máximas características de 9,5 mm e 19 mm e relação água/cimento de 0,35. O módulo de elasticidade do material foi determinado usando o trecho inicial linear da curva Carga-CMOD (deslocamento de abertura da boca da fissura) no ensaio de flexão com três pontos em viga entalhada no meio do vão, seguindo a proposta do comitê técnico 89-FMT da RILEM (Internacional Union of Testing and Research Laboratories for Materials and Structures).
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.
Resumo:
Per quanto riguarda le costruzioni in conglomerato cementizio armato gettato in opera, i sistemi strutturali più comunemente utilizzati sono quelli a telaio (con trasmissione di momento flettente), a setti portanti o una combinazione di entrambi. A partire dagli anni ’60, numerosissimi sono stati gli studi relativamente al comportamento sismico di strutture in c.a. a telaio. Lo stesso si può affermare per le costruzioni costituite da pareti miste a telai. In particolare, l’argomento della progettazione sismica di tali tipologie di edifici ha sempre riguardato soprattutto gli edifici alti nei quali, evidentemente, l’impiego delle pareti avveniva allo scopo di limitarne la elevata deformabilità. Il comportamento sismico di strutture realizzate interamente a pareti portanti in c.a. è stato meno studiato negli anni, nonostante si sia osservato che edifici realizzati mediante tali sistemi strutturali abbiano mostrato, in generale, pregevoli risorse di resistenza nei confronti di terremoti anche di elevata intensità. Negli ultimi 10 anni, l’ingegneria sismica si sta incentrando sull’approfondimento delle risorse di tipologie costruttive di cui si è sempre fatto largo uso in passato (tipicamente nei paesi dell’Europa continentale, in America latina, negli USA e anche in Italia), ma delle quali mancavano adeguate conoscenze scientifiche relativamente al loro comportamento in zona sismica. Tali tipologie riguardano sostanzialmente sistemi strutturali interamente costituiti da pareti portanti in c.a. per edifici di modesta altezza, usualmente utilizzati in un’edilizia caratterizzata da ridotti costi di realizzazione (fabbricati per abitazioni civili e/o uffici). Obiettivo “generale” del lavoro di ricerca qui presentato è lo studio del comportamento sismico di strutture realizzate interamente a setti portanti in c.a. e di modesta altezza (edilizia caratterizzata da ridotti costi di realizzazione). In particolare, le pareti che si intendono qui studiare sono caratterizzate da basse percentuali geometriche di armatura e sono realizzate secondo la tecnologia del cassero a perdere. A conoscenza dello scrivente, non sono mai stati realizzati, fino ad oggi, studi sperimentali ed analitici allo scopo di determinare il comportamento sismico di tali sistemi strutturali, mentre è ben noto il loro comportamento statico. In dettaglio, questo lavoro di ricerca ha il duplice scopo di: • ottenere un sistema strutturale caratterizzato da elevate prestazioni sismiche; • mettere a punto strumenti applicativi (congruenti e compatibili con le vigenti normative e dunque immediatamente utilizzabili dai progettisti) per la progettazione sismica dei pannelli portanti in c.a. oggetto del presente studio. Al fine di studiare il comportamento sismico e di individuare gli strumenti pratici per la progettazione, la ricerca è stata organizzata come segue: • identificazione delle caratteristiche delle strutture studiate, mediante lo sviluppo/specializzazione di opportune formulazioni analitiche; • progettazione, supervisione, ed interpretazione di una estesa campagna di prove sperimentali eseguita su pareti portanti in c.a. in vera grandezza, al fine di verificarne l’efficace comportamento sotto carico ciclico; • sviluppo di semplici indicazioni (regole) progettuali relativamente alle strutture a pareti in c.a. studiate, al fine di ottenere le caratteristiche prestazionali desiderate. I risultati delle prove sperimentali hanno mostrato di essere in accordo con le previsioni analitiche, a conferma della validità degli strumenti di predizione del comportamento di tali pannelli. Le elevatissime prestazioni riscontrate sia in termini di resistenza che in termini di duttilità hanno evidenziato come le strutture studiate, così messe a punto, abbiano manifestato un comportamento sismico più che soddisfacente.
Resumo:
Twenty production blasts in two open pit mines were monitored, in rocks with medium to very high strength. Three different blasting agents (ANFO, watergel and emulsion blend) were used, with powder factors ranging between 0.88 and 1.45 kg/m3. Excavators were front loaders and rope shovels. Mechanical properties of the rock, blasting characteristics and mucking rates were carefully measured. A model for the calculation of the productivity of excavators is developed thereof, in which the production rate results as a product of an ideal, maximum, productivity rate times an operating efficiency. The maximum rate is a function of the dipper capacity and the efficiency is a function of rock density, strength, and explosive energy concentration in the rock. The model is statistically significant and explains up to 92 % of the variance of the production rate measurements.
Resumo:
La mayoría de las estructuras de hormigón pretensadas construidas en los últimos 50 años han demostrado una excelente durabilidad cuando su construcción se realiza atendiendo las recomendaciones de un buen diseño así como una buena ejecución y puesta en obra de la estructura. Este hecho se debe en gran parte al temor que despierta el fenómeno de la corrosión bajo tensión típico de las armaduras de acero de alta resistencia. Menos atención se ha prestado a la susceptibilidad a la corrosión bajo tensión de los anclajes de postensado, posiblemente debido a que se han reportado pocos casos de fallos catastróficos. El concepto de Tolerancia al Daño y la Mecánica de la Fractura en estructuras de Ingeniería Civil ha empezado a incorporarse recientemente en algunas normas de diseño y cálculo de estructuras metálicas, sin embargo, aún está lejos de ser asimilado y empleado habitualmente por los ingenieros en sus cálculos cuando la ocasión lo requiere. Este desconocimiento de los aspectos relacionados con la Tolerancia al Daño genera importantes gastos de mantenimiento y reparación. En este trabajo se ha estudiado la aplicabilidad de los conceptos de la Mecánica de la Fractura a los componentes de los sistemas de postensado empleados en ingeniería civil, empleándolo para analizar la susceptibilidad de las armaduras activas frente a la corrosión bajo tensiones y a la pérdida de capacidad portante de las cabezas de anclajes de postensado debido a la presencia de defectos. Con este objeto se han combinado tanto técnicas experimentales como numéricas. Los defectos superficiales en los alambres de pretensado no se presentan de manera aislada si no que existe una cierta continuidad en la dirección axial así como un elevado número de defectos. Por este motivo se ha optado por un enfoque estadístico, que es más apropiado que el determinístico. El empleo de modelos estadísticos basados en la teoría de valores extremos ha permitido caracterizar el estado superficial en alambres de 5,2 mm de diámetro. Por otro lado la susceptibilidad del alambre frente a la corrosión bajo tensión ha sido evaluada mediante la realización de una campaña de ensayos de acuerdo con la actual normativa que ha permitido caracterizar estadísticamente su comportamiento. A la vista de los resultados ha sido posible evaluar como los parámetros que definen el estado superficial del alambre pueden determinar la durabilidad de la armadura atendiendo a su resistencia frente a la corrosión bajo tensión, evaluada mediante los ensayos que especifica la normativa. En el caso de las cabezas de anclaje de tendones de pretensado, los defectos se presentan de manera aislada y tienen su origen en marcas, arañazos o picaduras de corrosión que pueden producirse durante el proceso de fabricación, transporte, manipulación o puesta en obra. Dada la naturaleza de los defectos, el enfoque determinístico es más apropiado que el estadístico. La evaluación de la importancia de un defecto en un elemento estructural requiere la estimación de la solicitación local que genera el defecto, que permite conocer si el defecto es crítico o si puede llegar a serlo, si es que progresa con el tiempo (por fatiga, corrosión, una combinación de ambas, etc.). En este trabajo los defectos han sido idealizados como grietas, de manera que el análisis quedara del lado de la seguridad. La evaluación de la solicitación local del defecto ha sido calculada mediante el empleo de modelos de elementos finitos de la cabeza de anclaje que simulan las condiciones de trabajo reales de la cabeza de anclaje durante su vida útil. A partir de estos modelos numéricos se ha analizado la influencia en la carga de rotura del anclaje de diversos factores como la geometría del anclaje, las condiciones del apoyo, el material del anclaje, el tamaño del defecto su forma y su posición. Los resultados del análisis numérico han sido contrastados satisfactoriamente mediante la realización de una campaña experimental de modelos a escala de cabezas de anclaje de Polimetil-metacrilato en los que artificialmente se han introducido defectos de diversos tamaños y en distintas posiciones. ABSTRACT Most of the prestressed concrete structures built in the last 50 years have demonstrated an excellent durability when they are constructed in accordance with the rules of good design, detailing and execution. This is particularly true with respect to the feared stress corrosion cracking, which is typical of high strength prestressing steel wires. Less attention, however, has been paid to the stress corrosion cracking susceptibility of anchorages for steel tendons for prestressing concrete, probably due to the low number of reported failure cases. Damage tolerance and fracture mechanics concepts in civil engineering structures have recently started to be incorporated in some design and calculation rules for metallic structures, however it is still far from being assimilated and used by civil engineers in their calculations on a regular basis. This limited knowledge of the damage tolerance basis could lead to significant repair and maintenance costs. This work deals with the applicability of fracture mechanics and damage tolerance concepts to the components of prestressed systems, which are used in civil engineering. Such concepts have been applied to assess the susceptibility of the prestressing steel wires to stress corrosion cracking and the reduction of load bearing capability of anchorage devices due to the presence of defects. For this purpose a combination of experimental work and numerical techniques have been performed. Surface defects in prestressing steel wires are not shown alone, though a certain degree of continuity in the axial direction exist. A significant number of such defects is also observed. Hence a statistical approach was used, which is assumed to be more appropriate than the deterministic approach. The use of statistical methods based in extreme value theories has allowed the characterising of the surface condition of 5.2 mm-diameter wires. On the other hand the stress corrosion cracking susceptibility of the wire has been assessed by means of an experimental testing program in line with the current regulations, which has allowed statistical characterisasion of their performances against stress corrosion cracking. In the light of the test results, it has been possible to evaluate how the surface condition parameters could determine the durability of the active metal armour regarding to its resistance against stress corrosion cracking assessed by means of the current testing regulations. In the case of anchorage devices for steel tendons for prestressing concrete, the damage is presented as point defects originating from dents, scratches or corrosion pits that could be produced during the manufacturing proccess, transport, handling, assembly or use. Due to the nature of these defects, in this case the deterministic approach is more appropriate than the statistical approach. The assessment of the relevancy of defect in a structural component requires the computation of the stress intensity factors, which in turn allow the evaluation of whether the size defect is critical or could become critical with the progress of time (due to fatigue, corrosion or a combination of both effects). In this work the damage is idealised as tiny cracks, a conservative hypothesis. The stress intensity factors have been calculated by means of finite element models of the anchorage representing the real working conditions during its service life. These numeric models were used to assess the impact of some factors on the rupture load of the anchorage, such the anchorage geometry, material, support conditions, defect size, shape and its location. The results from the numerical analysis have been succesfully correlated against the results of the experimental testing program of scaled models of the anchorages in poly-methil methacrylate in which artificial damage in several sizes and locations were introduced.
Resumo:
El acero es, junto con el hormigón, el material más ampliamente empleado en la construcción de obra civil y de edificación. Además de su elevada resistencia, su carácter dúctil resulta un aspecto de particular interés desde el punto de vista de la seguridad estructural, ya que permite redistribuir esfuerzos a elementos adyacentes y, por tanto, almacenar una mayor energía antes del colapso final de la estructura. No obstante, a pesar de su extendida utilización, todavía existen aspectos relacionados con su comportamiento en rotura que necesitan una mayor clarificación y que permitirían un mejor aprovechamiento de sus propiedades. Cuando un elemento de acero es ensayado a tracción y alcanza la carga máxima, sufre la aparición de un cuello de estricción que plantea dificultades para conocer el comportamiento del material desde dicho instante hasta la rotura. La norma ISO 6892-1, que define el método a emplear en un ensayo de tracción con materiales metálicos, establece procedimientos para determinar los parámetros relacionados con este tramo último de la curva F − E. No obstante, la definición de dichos parámetros resulta controvertida, ya que éstos presentan una baja reproducibilidad y una baja repetibilidad que resultan difíciles de explicar. En esta Tesis se busca profundizar en el conocimiento del último tramo de la curva F − E de los aceros de construcción. Para ello se ha realizado una amplia campaña experimental sobre dos aceros representativos en el campo de la construcción civil: el alambrón de partida empleado en la fabricación de alambres de pretensado y un acero empleado como refuerzo en hormigón armado. Los dos materiales analizados presentan formas de rotura diferentes: mientras el primero de ellos presenta una superficie de rotura plana con una región oscura claramente apreciable en su interior, el segundo rompe según la clásica superficie en forma de copa y cono. La rotura en forma de copa y cono ha sido ampliamente estudiada en el pasado y existen modelos de rotura que han logrado reproducirla con éxito, en especial el modelo de Gurson- Tvergaard-Needleman (GTN). En cuanto a la rotura exhibida por el primer material, en principio nada impide abordar su reproducción numérica con un modelo GTN, sin embargo, las diferencias observadas entre ambos materiales en los ensayos experimentales permiten pensar en otro criterio de rotura. En la presente Tesis se realiza una amplia campaña experimental con probetas cilíndricas fabricadas con dos aceros representativos de los empleados en construcción con comportamientos en rotura diferentes. Por un lado se analiza el alambrón de partida empleado en la fabricación de alambres de pretensado, cuyo frente de rotura es plano y perpendicular a la dirección de aplicación de la carga con una región oscura en su interior. Por otro lado, se estudian barras de acero empleadas como armadura pasiva tipo B 500 SD, cuyo frente de rotura presenta la clásica superficie en forma de copa y cono. Estos trabajos experimentales han permitido distinguir dos comportamientos en rotura claramente diferenciados entre ambos materiales y, en el caso del primer material, se ha identificado un comportamiento asemejable al exhibido por materiales frágiles. En este trabajo se plantea la hipótesis de que el primer material, cuya rotura provoca un frente de rotura plano y perpendicular a la dirección de aplicación de la carga, rompe de manera cuasifrágil como consecuencia de un proceso de decohesión, de manera que la región oscura que se observa en el centro del frente de rotura se asemeja a una entalla circular perpendicular a la dirección de aplicación de la carga. Para la reproducción numérica de la rotura exhibida por el primer material, se plantea un criterio de rotura basado en un modelo cohesivo que, como aspecto novedoso, se hace depender de la triaxialidad de tensiones, parámetro determinante en el fallo de este tipo de materiales. Este tipo de modelos presenta varias ventajas respecto a los modelos GTN habitualmente empleados. Mientras los modelos GTN precisan de numerosos parámetros para su calibración, los modelos cohesivos precisan fundamentalmente de dos parámetros para definir su curva de ablandamiento: la tensión de decohesión ft y la energía de fractura GF . Además, los parámetros de los modelos GTN no son medibles de manera experimental, mientras que GF sí lo es. En cuanto a ft, aunque no existe un método para su determinación experimental, sí resulta un parámetro más fácilmente interpretable que los empleados por los modelos GTN, que utilizan valores como el porcentaje de huecos presentes en el material para iniciar el fenómeno de coalescencia o el porcentaje de poros que provoca una pérdida total de la capacidad resistente. Para implementar este criterio de rotura se ha desarrollado un elemento de intercara cohesivo dependiente de la triaxialidad de tensiones. Se han reproducido con éxito los ensayos de tracción llevados a cabo en la campaña experimental empleando dicho elemento de intercara. Además, en estos modelos la rotura se produce fenomenológicamente de la misma manera observada en los ensayos experimentales: produciéndose una decohesión circular en torno al eje de la probeta. En definitiva, los trabajos desarrollados en esta Tesis, tanto experimentales como numéricos, contribuyen a clarificar el comportamiento de los aceros de construcción en el último tramo de la curva F − E y los mecanismos desencadenantes de la rotura final del material, aspecto que puede contribuir a un mejor aprovechamiento de las propiedades de estos aceros en el futuro y a mejorar la seguridad de las estructuras construidas con ellos. Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest from the point of view of the structural safety, since it enables stress distribution with adjacent elements and, therefore, more energy can be stored before reaching the structural failure. However, despite of being extensively used, there are still some aspects related to its fracture behaviour that need to be clarified and that will allow for a better use of its properties. When a steel item is tested under tension and reaches the maximum load point, necking process begins, which makes difficult to define the material behaviour from that moment onward. The ISO standard 6892-1, which defines the tensile testing method for metallic materials, describes the procedures to obtain some parameters related to this last section of the F − E curve. Nevertheless, these parameters have proved to be controversial, since they have low reproducibility and repeatibility rates that are difficult to explain. This Thesis tries to deepen the knowledge of the last section of the F − E curve for construction steels. An extensive experimental campaign has been carried out with two representative steels used in civil engineering works: a steel rod used for manufacturing prestressing steel wires, before the cold-drawing process is applied, and steel bars used in reinforced concrete structures. Both materials have different fracture surfaces: while the first of them shows a flat fracture surface, perpendicular to the loading direction with a dark region in the centre of it, the second one shows the classical cup-cone fracture surface. The cup-cone fracture surface has been deeply studied in the past and different numerical models have been able to reproduce it with success, with a special mention to the Gurson-Tvergaard-Needleman model (GTN). Regarding the failure surface shown by the first material, in principle it can be numerically reproduced by a GTN model, but the differences observed between both materials in the experimental campaign suggest thinking of a different failure criterium. In the present Thesis, an extensive experimental campaign has been carried out using cylindrical specimens made of two representative construction steels with different fracture behaviours. On one hand, the initial eutectoid steel rod used for manufacturing prestressing steel wires is analysed, which presents a flat fracture surface, perpendicular to the loading direction, and with a dark region in the centre of it. On the other hand, B 500 SD steel bars, typically used in reinforced concrete structures and with the typical cup-cone fracture surface, are studied. These experimental works have allowed distinguishing two clearly different fracture behaviours between both materials and, in the case of the first one, a fragile-like behaviour has been identified. For the first material, which shows a flat fracture surface perpendicular to the loading direction, the following hypothesis is proposed in this study: a quasi-brittle fracture is developed as a consequence of a decohesion process, with the dark region acting as a circular crack perpendicular to the loading direction. To reproduce numerically the fracture behaviour shown by the first material, a failure criterium based on a cohesive model is proposed in this Thesis. As an innovative contribution, this failure criterium depends on the stress triaxiality state of the material, which is a key parameter when studying fracture in this kind of materials. This type of models have some advantages when compared to the widely used GTN models. While GTN models need a high number of parameters to be defined, cohesive models need basically two parameters to define the softening curve: the decohesion stress ft and the fracture energy GF . In addition to this, GTN models parameters cannot be measured experimentally, while GF is indeed. Regarding ft, although no experimental procedure is defined for its obtention, it has an easier interpretation than the parameters used by the GTN models like, for instance, the void volume needed for the coalescence process to start or the void volume that leads to a total loss of the bearing capacity. In order to implement this failure criterium, a triaxiality-dependent cohesive interface element has been developed. The experimental results obtained in the experimental campaign have been successfully reproduced by using this interface element. Furthermore, in these models the failure mechanism is developed in the same way as observed experimentally: with a circular decohesive process taking place around the longitudinal axis of the specimen. In summary, the works developed in this Thesis, both experimental and numerical, contribute to clarify the behaviour of construction steels in the last section of the F − E curve and the mechanisms responsible for the eventual material failure, an aspect that can lead to a better use of the properties of these steels in the future and a safety improvement in the structures built with them.
Resumo:
Nanoscale Al/SiC composite laminates have unique properties, such as high strength, high toughness, and damage tolerance. In this article, the high-temperature nanoindentation response of Al/SiC nanolaminates is explored from room temperature up to 300_C. Selected nanoindentations were analyzed postmortem using focused ion beam and transmission electron microscopy to ascertain the microstructural changes and the deformation mechanisms operating at high temperature.
Resumo:
En este trabajo se determina la tolerancia al daño de un acero inoxidable austeno-ferrítico trefilado hasta obtener resistencia propias del acero de pretensado. Para ello se han realizado ensayos de fractura sobre alambres con secciones transversales debilitadas por fisuras de fatiga propagadas desde la superficie exterior. La medida de la tolerancia al daño adoptada es la curva empírica carga de rotura-profundidad de fisura. Para valorar cuantitativamente los resultados, se utilizan las curvas de dos aceros de pretensar eutectoides, respectivamente fabricados por trefilado y por tratamiento térmico de templado y revenido, así como un modelo elemental de colapso plástico por tracción para alambres fisurados. La microestructura austeno-ferrítico de los alambres inoxidables adquiere una marcada orientación en la dirección de trefilado, que induce una fuerte anisotropía de fractura en los alambres y condiciona su mecanismo macroscópico de colapso a tracción cuando están Asurados. Para observar este mecanismo se ha utilizado la técnica VIC-2D de adquisición y análisis computerizado de imágenes digitales en ensayos mecánicos, aplicándola a ensayos de fractura a tracción realizados con probetas planas de alambre inoxidable trefilado Asuradas transversalmente. Damage tolerance of a high strength cold-drawn ferritic-austenitic stainless steel is assessed by means of tensile fracture tests of cracked wires. A fatigue crack was transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behavior is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D was used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plañe specimens extracted from the cold-drawn wires. Additionally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic-austenitic stainless steel wires is compared with that of the two types of high strength eutectoid wires currently used as prestressing steel for concrete. An elementary plástic collapse model for tensile failure of surface cracked wires is used to assess the damage tolerance curves.
Resumo:
Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest, since it allows for more energy to be stored before failure. A better understanding of the material behaviour before failure may lead to better structural safety strategies.