866 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)
Resumo:
A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.
Resumo:
Between-subject and within-subject variability is ubiquitous in biology and physiology and understanding and dealing with this is one of the biggest challenges in medicine. At the same time it is difficult to investigate this variability by experiments alone. A recent modelling and simulation approach, known as population of models (POM), allows this exploration to take place by building a mathematical model consisting of multiple parameter sets calibrated against experimental data. However, finding such sets within a high-dimensional parameter space of complex electrophysiological models is computationally challenging. By placing the POM approach within a statistical framework, we develop a novel and efficient algorithm based on sequential Monte Carlo (SMC). We compare the SMC approach with Latin hypercube sampling (LHS), a method commonly adopted in the literature for obtaining the POM, in terms of efficiency and output variability in the presence of a drug block through an in-depth investigation via the Beeler-Reuter cardiac electrophysiological model. We show improved efficiency via SMC and that it produces similar responses to LHS when making out-of-sample predictions in the presence of a simulated drug block.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.
Resumo:
Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.
Resumo:
We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
Resumo:
Given a parametrized n-dimensional SQL query template and a choice of query optimizer, a plan diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over the query parameter space. These diagrams have proved to be a powerful metaphor for the analysis and redesign of modern optimizers, and are gaining currency in diverse industrial and academic institutions. However, their utility is adversely impacted by the impractically large computational overheads incurred when standard brute-force exhaustive approaches are used for producing fine-grained diagrams on high-dimensional query templates. In this paper, we investigate strategies for efficiently producing close approximations to complex plan diagrams. Our techniques are customized to the features available in the optimizer's API, ranging from the generic optimizers that provide only the optimal plan for a query, to those that also support costing of sub-optimal plans and enumerating rank-ordered lists of plans. The techniques collectively feature both random and grid sampling, as well as inference techniques based on nearest-neighbor classifiers, parametric query optimization and plan cost monotonicity. Extensive experimentation with a representative set of TPC-H and TPC-DS-based query templates on industrial-strength optimizers indicates that our techniques are capable of delivering 90% accurate diagrams while incurring less than 15% of the computational overheads of the exhaustive approach. In fact, for full-featured optimizers, we can guarantee zero error with less than 10% overheads. These approximation techniques have been implemented in the publicly available Picasso optimizer visualization tool.
Resumo:
Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.
Resumo:
Structural Support Vector Machines (SSVMs) have recently gained wide prominence in classifying structured and complex objects like parse-trees, image segments and Part-of-Speech (POS) tags. Typical learning algorithms used in training SSVMs result in model parameters which are vectors residing in a large-dimensional feature space. Such a high-dimensional model parameter vector contains many non-zero components which often lead to slow prediction and storage issues. Hence there is a need for sparse parameter vectors which contain a very small number of non-zero components. L1-regularizer and elastic net regularizer have been traditionally used to get sparse model parameters. Though L1-regularized structural SVMs have been studied in the past, the use of elastic net regularizer for structural SVMs has not been explored yet. In this work, we formulate the elastic net SSVM and propose a sequential alternating proximal algorithm to solve the dual formulation. We compare the proposed method with existing methods for L1-regularized Structural SVMs. Experiments on large-scale benchmark datasets show that the proposed dual elastic net SSVM trained using the sequential alternating proximal algorithm scales well and results in highly sparse model parameters while achieving a comparable generalization performance. Hence the proposed sequential alternating proximal algorithm is a competitive method to achieve sparse model parameters and a comparable generalization performance when elastic net regularized Structural SVMs are used on very large datasets.
Resumo:
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets. © 2010 Springer-Verlag.