445 resultados para Hidróxido sódico
Resumo:
The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. The fibers were characterized and made matting (non-woven). The phases of the project were consisted to develop methods and to convert these fibers (booster) blended with polyester resin (matrix) in different proportions (10%, 20% and 30%) at the composite. Were studied fiber characteristics, mechanical properties of the composites, water absorption and scanning electron microscopy. Initially, the fibers were treated with solution of sodium hydroxide of 0.05 mols, and then taken to matting preparing at the textile engineering laboratory - UFRN. The composites were made by compression molding, using an orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as initiator (catalyst). To evaluate the mechanical tests (tensile and flexural) and water absorption were made twelve specimens with dimensions 150x25x3 mm were cut randomly. According to the standard method, tensile tests (ASTM 3039) bending tests (ASTM D790) were performed at the mechanical testing of metals at laboratory UFRN. The results of these tests showed that the composite reinforced with 30% had a better behavior when exposed to tension charge; while on the three points bending test showed that the composite reinforced with 10% had a better behavior. In the water absorption test it was possible to see that the highest absorption happened on the composite reinforced with 30%. In the micrographs, it was possible to see the regions of rupture and behavior of the composite (booster / matrix)
Resumo:
It´s been motivating motivated by the current rulers as an energy solution the use of the biodiesel as source of energy, that doesn't damage the environment and promotes the development of the areas where the base plant are grown. The process of production of the biodiesel, starting from the castor oil plant and its derivers, generates a known product as castor oil plant pie that has been used as fertilizer. Once disintoxicated, it can serve as animal ration, because it contains high content of proteins, presenting larger joined value. The disintoxication process, can be obtained through the process of drying the pie with the construction and use of models of dryers capable to elevate the temperature of the castor oil plant pie to approximately 60ºC.In this temperature the product tends to eliminate the ricina, with the aid of an aqueous solution of hydroxide of calcium, or still reach higher temperatures to make the disintoxication without a chemical treatment. It was made a bibliographical research about known processes of disintoxication of the castor oil plant pie from the autoclave use to the drying direct exposure to the sun. Starting from the state of the art and identification of the object, it was chosen solar dryers to eliminate the ricina. It was applied two types of solar dryers: the one of solar direct exposure, and the one with concentrador. The castor oil plant pie was separated in samples, with measurement of its initial mass, codified and placed in the dryers. The results were presented in graphs and tables forms, with the values of temperatures noticed. It was noticed the variations of temperature and the relationships analyzed related with the ricina content eliminated from the pie. The analysis of the ricina content was accomplished by Embrapa - Campina Grande, by eletroforese method. The analysis of the result of considering the content of ricina of the samples. It was observed that, we obtained lower rate of ricina in samples that had larger drying time and average value temperature above 60ºC. Comparing with the ones submitted to higher temperatures and in a shorter period of time. It was possible to evaluate the efficiency of the dryers in the desintoxication process of the samples, as well as the type of more appropriate dryer for the drying pie process. Finally, it was concluded that the solar dryer with concentrador presents higher values temperatures than the direct exposure one. So, it´s being more opportune applied in the castor oil plant pie drying process. However, more than one hour for drying time is needed
Resumo:
No presente trabalho, objetivou-se avaliar os efeitos da dessecação e identificar lesões por predação por insetos, em diásporos de canela-batalha (Cryptocarya aschersoniana Mez.), utilizando-se testes de raios X. Os danos provocados pela dessecação foram dimensionados nas imagens e associados à formação de plântulas. Diásporos recém-beneficiados (45 % de umidade e 37 % de germinação) foram colocados para secar em sala climatizada (20 ºC e 60 % UR), dentro de bandejas plásticas em camada única. Posteriormente, com o intuito de acelerar o processo de secagem, foram colocados em caixas de secagem com solução saturada de hidróxido de sódio (28 % UR) e amostrados com 45, 37, 35, 31 e 26 % de umidade. Para as radiografias, utilizou-se a intensidade de radiação de 40 kVp e tempo de exposição de 1,5 minutos. Posteriormente, as radiografias foram fotografadas e as imagens analisadas em computador, sendo medido o afastamento entre o endocarpo e a semente. As sementes foram classificadas em sementes intactas, sementes com afastamento parcial, sementes com afastamento total e sementes predadas. Os testes de germinação foram realizados sobre areia, em germinadores tipo Mangelsdorf a 25 ºC e luz branca constante. Pelos resultados, observa-se que a germinação é comprometida quando o teor de água das sementes fica abaixo de 26 %. Nesse ponto, o afastamento entre o endocarpo e a semente é de 0,65 mm. Houve uma correlação positiva entre a viabilidade das sementes, avaliada pelo teste de germinação, e o afastamento entre o endocarpo e a semente observado nas radiografias. A análise radiográfica possibilita identificar danos provocados por predação após infestação por insetos.
Resumo:
The treatment of colored and alkaline effluent has been a challenge to the textile industry. An alternative to remove the colors of those effluents is applying magnesium chloride as a coagulant agent. The magnesium ion, in high pH, hydrolyzes itself, forming the magnesium hydroxide which has a large adsorptive area and positive electrostatic charges able to act as an efficient coagulant. The bittern wastewater from the salt industries has been studied as a potential font of this magnesium ion. Nowadays, this bittern wastewater is evicted into the sea, without any treatment or other use. This thesis has evaluated the potential of applying the wastewater from the salt industries in the treatment of dyeing effluent containing indigo dye and alkaline pH. All the experiments were made in jar tests simulating the chemical coagulation, flocculation and decantation steps ranging the pH and the concentration of magnesium ion. Were obtained removals between 96% and 76% for turbidity, apparent color, and true color, respectively, using 200mg/L Mg2+. The reduction of costs with acid, when were used the salt industries wastewater, comparing with Al2(SO4)3, was 62%. For the degradation of organic matter remaining in the clarified, around 900 mg/L, was applyed the advanced process of oxidation: photo-Fenton. The preliminary results showed 57% reduction in DOC. According to the results obtained, the salt industries wastewater can be applied, as coagulant, in the physical-chemical treatment of the denim dyeing wastewater, so it is not necessary a previous adjust of pH, efficiently and economically
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams
Resumo:
The fear related to dental procedures can be acquired through disturbing experiences and/or negative cultural influences related in experiences of previous generations. Such influences may be present in diverse forms of cultural expression: in the cinema, plastic arts, music, literature, and diverse vehicles of printed and visual media. This research aimed investigates the images of fear related to the dental service and dentist in motion pictures. The study has qualitative approach, which used the documentary analysis of movies. The data collection was accomplished through research in the Internet by means of the Google tool (http://www.google.com.br), using the describing words filme and dentista . A total of 44 films were found. Of these, after selective criterion for films with scenes showing interaction between dentist and patient in the execution of clinical procedure, only 24 films were enclosed. Then, these were registered in data base created for this research. After second selective criterion of inclusion (scenes with suggestion of dental anxiety), 15 films remained. As regards cinematographic gender, the films with scenes showing "dental anxiety" varied between comedy (8), horror (3), drama (2), thriller (1) and childish (1). Of these films, scenes with images of situations that suggest fear of the dentist and his job were selected and described. The images were categorized by the identification of negative characteristics that incite "dental anxiety". Then, the classification of the categories was proceeded detaching the most recurrent characteristics in the scenes: situation of fear in the waiting-room; pain; instrument coarse/rudimentary; coarseness of the dentist; torture; and low qualification technique. The waiting-room was observed as a place of great tension, due to the noises coming from the dental attendance. The pain related to the Dentistry was the predominant subject in the majority of films (14), associated to others negative characteristics. The rudimentary aspects of procedures and instruments, and the coarse attitudes of the professional could be observed too. The dentist was characterized as confused, sadist, violent, insensitive, incompetent person and disturbed. Such results suggest that, despite the technological advances of the profession, the image of the dentist and his job is still transmitted in a negative way aspect and reinforces the dental anxiety
Resumo:
In the behavioral paradigm of discriminative avoidance task, both short and long-term memories have been extensively investigated with behavioral and pharmacological approaches. The aim of the present study was to evaluate, using the abovementioned model, the hippocampal expression of zif-268 - a calcium-dependent immediate early gene involved with synaptic plasticity process - throughout several steps of memory formation, such as acquisition, evocation and extiction. The behavioral apparatus consisted of a modified elevaated plus-maze, with their enclosed arms disposed in "L". A pre-exposure to the maze was made with the animal using all arms enclosed, for 30 minutes, followed by training and test, during 10 minutes each. The between sections interval was 24h. During training, aversive stimuli (bright light and loud noise) were actived whenever the animals entered one of the enclosed armas (aversive arm). Memory acquisiton, retention and extinction were evaluated by the percentage of the total time spent exploring the aversive arm. The parameters evaluated (time spent in the arms and total distance traveled) were estimated with an animal tracking software (Anymaze, Stoelting, USA). Learning during training was estimated by the decrease of the time spent exploring the aversive arm. One hour after the beginning of each section, animals were anaesthetized with sodium-thiopental (i.p.) and perfused with 0.9% heparinized saline solution followed by 4% paraformaldehyde. Brains were cryoprotected with 20% sucrose, separeted in three blocks and frozen. The middle block, containing the hippocampus, was sectioned at 20 micro meters in the coronal plane and the resutant sections were submitted to zif-268 immunohistochemistry. Our results show an increased expression of zif-268 in the dentate gyrus (DG) during the evocation and extinction stages. There is a distinct participation of the DG during the memory evocation, but not during its acquisition. Inaddition, all hippocampal regions (CA1, CA3 and DG) presented an increased zif-268 expression during the process of extinction.
Resumo:
In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
In this work, the plant species Copernicia prunifera (Miller) H. E. Moore (carnauba), naturally occurring which prevails in the northeast region of Brazil was the subject of studies aiming its use as external coating of pipelines used in petroleum industry. The part of the plant worked were the leaves, also called straw, which were coated with resinous material. For this purpose, it was necessary to evaluate the effectiveness of the use of acrylic resins in the straw carnauba coating. The properties of the untreated carnauba straw and chemically treated with sodium hydroxide, hexane and carbon tetrachloride were investigated by ATRFTIR, SEM and thermal analysis. The first two techniques showed that treatment with solvents has caused major changes in the straw surface, while the thermal analysis indicated that the sodium hydroxide caused variations in thermal stability of straw constituents. Water absorption measurements showed that treatments have accelerated the absorption process and the reduction of contact angle values for treated samples with solvents indicated higher hidrophilicity of straw. The tensile tests showed lower values of elastic modulus and tensile strength for treated samples. Furthermore, coatings using pure commercial resins A and B as well as the formulations with clay were applied in straw and they were examined once again through thermal analysis, water absorption measurements, contact angle and mechanical tests. To analyze the effect of heat ageing, samples were subjected to tensile tests again in order to assess its resistance. The results showed that the resins/clay formulations increased thermal stability of straw, they promoted a good impermeabilization and caused significant decrease in the values of elastic modulus and tensile strength. Evaluating the ageing effect on the mechanical properties, it has been showed good recovery to the coated straw with the formulations A 60 and A 80% in modulus and tensile strength values and elongation at break values have remained very close. It is thus concluded that the carnauba straw can be used as a coating of pipelines with significant cost savings, since there is no need for pretreatment for its use and shows itself as a viable biotechnology alternative, contributing to the quality of coatings material and environment preservation.
Resumo:
Muitos mecanismos provocados pela ação humana vêm gerando um aumento na queima de combustíveis fósseis e processos químicos (produtos orgânicos, carvão, madeira, óleo diesel, gasolina e outros derivados de petróleo) e, consequentemente, há um aumento na emissão de CO2 na atmosfera. Uma das alternativas para a captura desse poluente é o processo de adsorção, o qual pode ajudar na redução do CO2. As hidrotalcitas ou hidróxidos duplos lamelares (HDL s) estão dentre esses materiais estudados, já que apresentam alta estabilidade e uma boa porosidade, tornando-se assim um promissor adsorvente de gases poluentes. Os HDL s formam um grupo de argilas do tipo aniônico que consiste em camadas positivamente carregadas de óxido de metal (ou hidróxido de metal) com intercamadas de ânions. Foi constatado que ânions que possuem duas cargas negativas, estabilizam muito mais que ânions monovalentes, sendo o carbonato o mais estável dos ânions divalentes. Neste trabalho, foi proposta uma modificação na síntese direta através da co-precipitação a pH constante utilizando sais de cátions divalentes (Mg2+) e trivalentes (Al3+) reportados na literatura. Durante a síntese dos HDL s retirou-se o carbonato, bem como, utilizou-se um copolímero como um template para o alargamento das lamelas. As amostras foram caracterizadas utilizando as técnicas de DRX, TG/DTG, FTIR, MEV/EDX, MET e adsorção e dessorção de N2. Os dados obtidos indicam que a estrutura, mesmo após a modificação, apresentou resultados condizentes com os encontrados na literatura. Dentre as várias aplicações dos HDL s foi realizado o estudo da adsorção do CO2. A capacidade de adsorção do material foi testada de acordo com o tempo de contato entre o adsorvente e o adsorbato, sendo esperado que os materiais tratados com template apresentassem um maior desempenho
Resumo:
Two pillaring methods were tested to synthesize pillared clays containing mixed Al/Co pillars. Using the first method, based on the traditional procedure, were obtained materials containing different Co concentrations: 10, 25, 50, 75 and 100 % of Co in the pillaring solution. Just the experiments with low concentrations (10 and 25 % of Co) has formed pillared clays, whereas the sample with 25 % of cobalt showed best results compared with the one obtained just using Al as pillaring agent (basal spacing higher than 18 Å and surface area bigger than 300 m²/g). The 27Al NMR results pointed out the formation of mixed Al/Co pillars due to decreased between the intensities of AlVI/AlIV signals, indicating that the AlIV content decreased while Co content increased, suggesting the isomorphic substitution of Al atoms for Co in the Keggin ion structure (pillaring agent). For the samples containing 75 and 100 % of cobalt, it was verified the formation of others materials, which could be identified as hydrotalcite like compounds. The second pillarization method was named mixed layers, because the objective was to intercalate clay layers with hydrotalcite layers. Thus, after calcination, the hydrotalcite layers would dehydroxylate, resulting just in the metals oxides, intercalated between the clay sheets, thus generating, a pillared clay. For this purpose, were tested 4 synthesis procedures: physical mixture, mixture in water, ionic exchange under reflux and in situ synthesis. Of these, the method which showed the best results was the in situ synthesis, in which basal spacings of 14 Å (after calcination) were obtained, indicating that the samples are intercalated with metal oxides (Mg and Al). This procedure was reproduced with a Co-Al LDH (layered double hydroxide) and similar results were obtained, testifying the method reproducibility
Resumo:
Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming
Resumo:
OBJETIVO: Investigar, em ratos, o efeito da S(+)cetamina na histologia renal após hemorragia intra-operatória. MÉTODOS: Vinte ratos Wistar machos, anestesiados com pentobarbital sódico, foram divididos, aleatoriamente, em 2 grupos: G1 - controle (n=10) e G2 - S(+)cetamina (n=10), submetidos a hemorragia de 30% da volemia em 3 momentos (10% a cada 10 min) 60 min após anestesia. G2 recebeu S(+)cetamina, 15 mg. kg-1, i.m., 5 min após anestesia e 55 min antes do 1.º momento de hemorragia (M1). Foram monitorizadas a pressão arterial média (PAM), temperatura retal (T) e freqüência cardíaca. Os animais foram sacrificados (M4) 30 min após o 3.º momento de hemorragia (M3). Os rins e o sangue das hemorragias foram utilizados para estudo histológico e do hematócrito (Ht). RESULTADOS: Houve redução significativa da PAM, T e Ht. Na histologia, G1=G2 na dilatação tubular, congestão e necrose. A soma total dos escores foi significativamente diferente e G2>G1. CONCLUSÃO: Hemorragia e hipotensão determinaram alterações na histologia renal. O aumento da concentração sangüínea de catecolaminas provavelmente determinou escores mais altos de alterações histológicas com o uso de S(+)cetamina.