998 resultados para Geothermal engineering
Resumo:
Objective: To test if subpopulations of chondrocytes from different cartilage zones could be used to engineer cartilage constructs with features of normal stratification. Design: Chondrocytes from the superficial and middle zones of immature bovine cartilage were cultured in alginate, released, and seeded either separately or sequentially to form cartilage constructs. Constructs were cultured for 1 or 2 weeks and were assessed for growth, compressive properties, and deposition, and localization of matrix molecules and superficial zone protein (SZP). Results: The cartilaginous constructs formed from superficial zone chondrocytes exhibited less matrix growth and lower compressive properties than constructs from middle zone chondrocytes, with the stratified superficial-middle constructs exhibiting intermediate properties. Expression of SZP was highest at the construct surfaces, with the localization of SZP in superficial-middle constructs being concentrated at the superficial surface. Conclusions: Manipulation of subpopulations of chondrocytes can be useful in engineering cartilage tissue with a biomimetic approach, and in fabricating constructs that exhibit stratified features of normal articular cartilage. (C) 2003 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.
Resumo:
In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.
Resumo:
This panel discusses the impact of Green IT on information systems and how information systems can meet environmental challenges and ensure sustainability. We wish to highlight the role of green business processes, and specifically the contributions that the management of these processes can play in leveraging the transformative power of IS in order to create an environmentally sustainable society. The management of business processes has typically been thought of in terms of business improvement alongside the dimensions time, cost, quality, or flexibility – the so-called ‘devil’s quadrangle’. Contemporary organizations, however, increasingly become aware of the need to create more sustainable, IT-enabled business processes that are also successful in terms of their economic, ecological, as well as social impact. Exemplary ecological key performance indicators that increasingly find their way into the agenda of managers include carbon emissions, data center energy, or renewable energy consumption (SAP 2010). The key challenge, therefore, is to extend the devil’s quadrangle to a devil’s pentagon, including sustainability as an important fifth dimension in process change.
Resumo:
Doug Hargreaves has completed a year as President of Engineers Australia, a 90,000 strong membership based organisation representing the engineering profession. In preparing for the year Doug decided that the core of his own leadership is his values and that the legacy he wanted to be remembered for at the end of his year, was how his values underpinned everything he did. The framework for this values approach was a book he co-authored entitled 'Values Driven Leadership'. The essence of Doug's philosophy is that a leader who bases their leadership on a strong sense of values will create an environment where people have a strong sense of Belonging, Identity and Purpose. This paper reflects on Doug's year of leadership of Engineers Australia and offers insights and examples of where his values driven leadership approach played out and contributed to various scenarios he encountered over the year. The paper will share Doug's approach to leadership and offer an understanding of how an effective leader actually does what he does. Too often leadership is seen as a nebulous capacity that people either have or do not have. In this paper, we will identify the specific skills and abilities within a values framework that will allow any leader to be more effective in their role.
Resumo:
A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated
Resumo:
Proceedings of the Design Theme Postgraduate Student Conference, held 10th September 2008 at Queensland University of Technology.
Resumo:
This paper focuses on implementing engineering education in middle school classrooms (grade levels 7-9). One of the aims of the study was to foster students’ and teachers’ knowledge and understanding of engineering in society. Given the increasing importance of engineering in shaping our daily lives, it is imperative that we foster in students an interest and drive to participate in engineering education, increase their awareness of engineering as a career path, and inform them of the links between engineering and the enabling subjects, mathematics, science, and technology. Data for the study are drawn from five classes across three schools. Grade 7 students’ responded to initial whole class discussions on what is an engineer, what is engineering, what characteristics engineers require, engineers (family/friends) that they know, and subjects that may facilitate an engineering career. Students generally viewed engineers as creative, future-oriented, and artistic problem finders and solvers; planners and designers; “seekers” and inventors; and builders of constructions. Students also viewed engineers as adventurous, decisive, community-minded, reliable, and “smart.” In addition to a range of mathematics and science topics, students identified business studies, ICT, graphics, art, and history as facilitating careers in engineering. Although students displayed a broadened awareness of engineering than the existing research suggests, there was limited knowledge of various engineering fields and a strong perception of engineering as large construction.
Resumo:
This paper presents the method and results of a survey of 27 of the 33 Australian universities teaching engineering education in late 2007, undertaken by The Natural Edge Project (hosted by Griffith University and the Australian National University) and supported by the National Framework for Energy Efficiency. This survey aimed to ascertain the extent of energy efficiency (EE) education, and to identify preferred methods to assist in increasing the extent to which EE education is embedded in engineering curriculum. In this paper the context for the survey is supported by a summary of the key results from a variety of surveys undertaken over the last decade internationally. The paper concludes that EE education across universities and engineering disciplines in Australia is currently highly variable and ad hoc. Based on the results of the survey, this paper highlights a number of preferred options to support educators to embed sustainability within engineering programs, and future opportunities for monitoring EE, within the context of engineering education for sustainable development (EESD).