926 resultados para Gaussian convolution
Resumo:
The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.
Resumo:
Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.
Resumo:
Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graphics hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images. However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in particular, the shape of the corresponding filter kernel varies locally, which potentially results in objectionable rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for a particular pyramidal blurring technique. Moreover, the pyramidal blur algorithm is generalized to allow for a continuous variation of the blur width. Furthermore, an efficient implementation for programmable graphics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the resulting effect is very close to image blurring based on a convolution filter for many applications.
Resumo:
Fossil pollen data from stratigraphic cores are irregularly spaced in time due to non-linear age-depth relations. Moreover, their marginal distributions may vary over time. We address these features in a nonparametric regression model with errors that are monotone transformations of a latent continuous-time Gaussian process Z(T). Although Z(T) is unobserved, due to monotonicity, under suitable regularity conditions, it can be recovered facilitating further computations such as estimation of the long-memory parameter and the Hermite coefficients. The estimation of Z(T) itself involves estimation of the marginal distribution function of the regression errors. These issues are considered in proposing a plug-in algorithm for optimal bandwidth selection and construction of confidence bands for the trend function. Some high-resolution time series of pollen records from Lago di Origlio in Switzerland, which go back ca. 20,000 years are used to illustrate the methods.
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.
Resumo:
A three-dimensional model has been proposed that uses Monte Carlo and fast Fourier transform convolution techniques to calculate the dose distribution from a fast neutron beam. This method transports scattered neutrons and photons in the forward, lateral, and backward directions and protons, electrons, and positrons in the forward and lateral directions by convolving energy spread kernels with initial interaction available energy distributions. The primary neutron and photon spectrums have been derived from narrow beam attenuation measurements. The positions and strengths of the effective primary neutron, scattered neutron, and photon sources have been derived from dual ion chamber measurements. The size of the effective primary neutron source has been measured using a copper activation technique. Heterogeneous tissue calculations require a weighted sum of two convolutions for each component since the kernels must be invariant for FFT convolution. Comparisons between calculations and measurements were performed for several water and heterogeneous phantom geometries. ^
Resumo:
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.