983 resultados para GENE RECOMBINANT
Resumo:
Objective: In order to gain further insight into the function of the enteric adenovirus short fiber (SF), we have constructed a recombinant dodecahedron containing the SF protein of HAdV-41 and the HAdV-3 penton base. Methods: Recombinant baculoviruses expressing the HAdV-41 SF protein and HAdV-3 penton base were cloned and amplified in Sf9 insect cells. Recombinant dodecahedra were expressed by coinfection of High Five (TM) cells with both baculoviruses, 72 h post-infection. Cell lysate was centrifuged on sucrose density gradient and the purified recombinant dodecahedra were recovered. Results: Analysis by negative staining electron microscopy demonstrated that chimeric dodecahedra made of the HAdV-3 penton base and decorated with the HAdV-41 SF were successfully generated. Next, recombinant dodecahedra were digested with pepsin and analyzed by Western blot. A 'site-specific' proteolysis of the HAdV-41 SF was observed, while the HAdV-3 penton base core was completely digested. Conclusion: These results show that, in vitro, the HAdV-41 SF likely undergoes proteolysis in the gastrointestinal tract, its natural environment, which may facilitate the recognition of receptors in intestinal cells. The results obtained in the present study may be the basis for the development of gene therapy vectors towards the intestinal epithelium, as well as orally administered vaccine vectors, but also for the HAdV-41 SF partner identification. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Bovine coronavirus has been associated with diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract infections in calves and feedlot cattle. In Cuba, the presence of BCoV was first reported in 2006. Since then, sporadic outbreaks have continued to occur. This study was aimed at deepening the knowledge of the evolution, molecular markers of virulence and epidemiology of BCoV in Cuba. A total of 30 samples collected between 2009 and 2011 were used for PCR amplification and direct sequencing of partial or full S gene. Sequence comparison and phylogenetic studies were conducted using partial or complete S gene sequences as phylogenetic markers. All Cuban bovine coronavirus sequences were located in a single cluster supported by 100% bootstrap and 1.00 posterior probability values. The Cuban bovine coronavirus sequences were also clustered with the USA BCoV strains corresponding to the GenBank accession numbers EF424621 and EF424623, suggesting a common origin for these viruses. This phylogenetic cluster was also the only group of sequences in which no recombination events were detected. Of the 45 amino acid changes found in the Cuban strains, four were unique. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An endo-1,5-arabinanase (abnA) encoding gene from Aspergillus niveus was identified, cloned and successfully expressed in Aspergillus nidulans strain A773. Based on amino acid sequence comparison, the 34-kDa enzyme could be assigned to CAZy GH family 43. Characterization of purified recombinant endo-1,5-arabinanase (AbnA) revealed that it is active at a wide pH range (pH 4.0-7.0) and an optimum temperature at 70 degrees C. The immobilization of the AbnA was performed via covalent binding onto agarose-modified supports: glyoxyl iminodiacetic acid-Ni2+, glyoxyl amine, glyoxyl (4% and 10%) and cyanogen bromide activated sepharose. The yield of immobilization was similar on glyoxyl amine and glyoxyl (96%), and higher than glyoxyl iminodiacetic acid-Ni2+ (43%) support. The thermal inactivation of these immobilized preparations showed that the stability of the AbnA immobilized on glyoxyl 4 and 10% was improved by 4.0 and 10.3-fold factor at 70 degrees C. The half-life of glyoxyl 4% derivative at 60 degrees C was >48 h (pH 5), 9 h (pH 7) and 88 min (pH 9). The major hydrolysis product of debranched arabinan or arabinopentaose by glyoxyl agarose-immobilized AbnA was arabinobiose. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The city of Sao Paulo has the highest AIDS case rate, with nearly 60% in Brazil. Despite, several studies involving molecular epidemiology, lack of data regarding a large cohort study has not been published from this city. Objectives: This study aimed to describe the HIV-1 subtypes, recombinant forms and drug resistance mutations, according to subtype, with emphasis on subtype C and BC recombinants in the city of Sao Paulo, Brazil. Study design: RNA was extracted from the plasma samples of 302 HIV-1-seropositive subjects, of which 211 were drug-naive and 82 were exposed to ART. HIV-1 partial pol region sequences were used in phylogenetic analyses for subtyping and identification of drug resistance mutations. The envelope gene of subtype C and BC samples was also sequenced. Results: From partial pol gene analyses, 239 samples (79.1%) were assigned as subtype B, 23 (7.6%) were F1, 16 (5.3%) were subtype C and 24 (8%) were mosaics (3 CRF28/CRF29-like). The subtype C and BC recombinants were mainly identified in drug-naive patients (72.7%) and the heterosexual risk exposure category (86.3%), whereas for subtype B, these values were 69.9% and 57.3%, respectively (p = 0.97 and p = 0.015, respectively). An increasing trend of subtype C and BC recombinants was observed (p < 0.01). Conclusion: The HIV-1 subtype C and CRFs seem to have emerged over the last few years in the city of Sao Paulo, principally among the heterosexual population. These findings may have an impact on preventive measures and vaccine development in Brazil.
Resumo:
Hemophilia A is caused by a deficiency in coagulation factor VIII. Recombinant factor VIII can be used as an alternative although it is unavailable for most patients. Here, we describe the production of a human recombinant B-domain-deleted FVIII (rBDDFVIII) by the human cell line SK-HEP-1, modified by a lentiviral vector rBDDFVIII was produced by recombinant SK-HEP cells (rSK-HEP) at 1.5-2.1 IU/10(6) in 24 h. The recombinant factor had increased in vitro stability when compared to commercial pdFVIII. The functionality of rBDDFVIII was shown by its biological activity and by tail-clip challenge in hemophilia A mice. The rSK-HEP cells grew in a scalable system and produced active rBDDFVIII, indicating that this platform production can be optimized to meet the commercial production scale needs.
Resumo:
Superoxide dismutases (SODS; EC 1.15.1.1) are part of the antioxidant system of aerobic organisms and are used as a defense against oxidative injury caused by reactive oxygen species (ROS). The cloning and sequencing of the 788-bp genomic DNA from Trichoderma reesei strain QM9414 (anamorph of Hypocrea jecorina) revealed an open reading frame encoding a protein of 212 amino acid residues, with 65-90% similarity to manganese superoxide dismutase from other filamentous fungi. The TrMnSOD was purified and shown to be stable from 20 to 90 degrees C for 1 h at pH from 8 to 11.5, while maintaining its biological activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Resumo:
Abstract Background The city of Sao Paulo has the highest AIDS case rate, with nearly 60% in Brazil. Despite, several studies involving molecular epidemiology, lack of data regarding a large cohort study has not been published from this city. Objectives This study aimed to describe the HIV-1 subtypes, recombinant forms and drug resistance mutations, according to subtype, with emphasis on subtype C and BC recombinants in the city of São Paulo, Brazil. Study design RNA was extracted from the plasma samples of 302 HIV-1-seropositive subjects, of which 211 were drug-naive and 82 were exposed to ART. HIV-1 partial pol region sequences were used in phylogenetic analyses for subtyping and identification of drug resistance mutations. The envelope gene of subtype C and BC samples was also sequenced. Results From partial pol gene analyses, 239 samples (79.1%) were assigned as subtype B, 23 (7.6%) were F1, 16 (5.3%) were subtype C and 24 (8%) were mosaics (3 CRF28/CRF29-like). The subtype C and BC recombinants were mainly identified in drug-naïve patients (72.7%) and the heterosexual risk exposure category (86.3%), whereas for subtype B, these values were 69.9% and 57.3%, respectively (p = 0.97 and p = 0.015, respectively). An increasing trend of subtype C and BC recombinants was observed (p < 0.01). Conclusion The HIV-1 subtype C and CRFs seem to have emerged over the last few years in the city of São Paulo, principally among the heterosexual population. These findings may have an impact on preventive measures and vaccine development in Brazil.
Resumo:
Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.
Resumo:
Etablierung von Expressionsystemen für Gene der Indolalkaloid-Biosynthese unter besonderer Berücksichtigung von Cytochrom P450-Enzymen In der vorliegenden Arbeit wurden Enzyme aus der Arzneipflanze Rauvolfia serpentina bearbeitet. Es wurde versucht, das an der Biosynthese des Alkaloids Ajmalin beteiligte Cytochrom P450-Enzym Vinorin-Hydroxylase heterolog und funktionell zu exprimieren. Ein zunächst unvollständiger, unbekannter Cytochrom P450-Klon konnte komplettiert und eindeutig mittels heterologer Expression in sf9-Insektenzellen als Cinnamoyl-Hydroxylase identifiziert werden. Die Tauglichkeit des Insektenzellsystems für die Untersuchung der Vinorin-Hydroxylase ist auf Grund der deacetylierenden Wirkung der Insektenzellen auf das Substrat Vinorin nicht gegeben. Im Rahmen des Homology Cloning Projektes konnten mehrere Volllängenklone und diverse Teilsequenzen von neuen Cytochrom P450-Klonen ermittelt werden. Ausserdem wurde durch das unspezifische Binden eines degenerierten Primers ein zusätzlicher Klon gefunden, der der Gruppe der löslichen Reduktasen zugeordnet werden konnte. Diese putative Reduktase wurde auf die Aktivität von mehreren Schlüsselenzymen der Ajmalin-Biosynthese durch heterologe Expression in E.coli und anschliessende HPLC-gestützte Aktivitätstests ohne Erfolg geprüft. Bedingt durch die Untauglichkeit des Insektenzellsystems für die Identifizierung der Vinorin-Hydroxylase, wurde ein neuartiges Modul-gestütztes, pflanzliches Expressionsystem etabliert, um vorhandene P450-Volllängenklone auf Vinorin- Hydroxylaseaktivität testen zu können. Die Funktionalität des Systems konnte durch die heterologe Expression der Polyneuridinaldehyd Esterase bestätigt werden. Trotzdem war es bis jetzt nicht möglich, die Cinnamoyl-Hydroxylase als Kontrollenzym für das pflanzliche System oder aber die gesuchte Vinorin- Hydroxylase in aktiver Form zu exprimieren.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.
Resumo:
BACKGROUND: Anaplasma phagocytophilum (formerly known as the human granulocytic ehrlichia, Ehrlichia equi and Ehrlichia phagocytophila) is an obligate intracellular organism causing clinical disease in humans and various species of domestic animals. OBJECTIVES: The objectives of this investigation were to sequence and clone the major surface protein 5 (MSP5) of A phagocytophilum and to evaluate the suitability of this antigen in the serologic diagnosis of anaplasmosis in humans and dogs. METHODS: The msp5 gene of A phagocytophilum was sequenced, cloned, and expressed in Escherichia coli. The predicted amino acid sequence homology of the various MSP5/major antigenic protein 2 orthologs was compared among various Anaplasma and Ehrlichia species. Recombinant MSP5 of A phagocytophilum was used in an ELISA to detect antibodies in serum samples from humans and dogs infected with the organism. RESULTS: Serum samples from 104 individuals previously diagnosed with A phagocytophilum infection, as well as samples from clinically healthy humans, were tested. In addition, multiple samples from 4 dogs experimentally infected with 2 different geographic isolates of A phagocytophilum and 5 dogs naturally infected with a Swiss isolate were tested using ELISA. Using this group of immunofluorescent antibody test-positive and immunofluorescent antibody test-negative samples, we found the overall agreement between assays to be >90%. CONCLUSIONS: These results indicate that recombinant MSP5 has potential for use as a diagnostic test antigen to detect infection with A phagocytophilum in both dogs and humans. However, sequence similarities among orthologs of MSP5 in related species of anaplasma and ehrlichia suggest that cross-reactivity among these pathogens is likely if the entire peptide is used as a test antigen.