904 resultados para GASTROINTESTINAL DISEASES
Resumo:
Control of wheat rusts in north-eastern Australia has been based on resistance breeding since the early 1920s. It has been an enduring journey of discovery, disappointment, and achievement, which has culminated in a pool of knowledge and expertise upon which today's plant breeders can efficiently target durable resistance to the major rust diseases. This paper outlines significant advances in genetic control of rusts in the region, with particular emphasis on the invaluable role played by the University of Sydney rust control program and its influence on wheat breeding in the region and throughout Australia. This paper is part of ‘Global Landscapes in Cereal Rust Control’, see Aust. J. Agric. Res. Vol. 58, no. 6.
Resumo:
Diseases of Fruit Crops in Australia is the new standard reference in applied plant pathology in Australia covering important diseases affecting the broad range of fruit and nut crops grown throughout Australia. It is an essential tool for growers, horticulturists, crop consultants, research scientists, plant pathologists, quarantine officers, agribusiness representatives, pest management personnel, educators and students. The book is generously illustrated with high quality colour images to help diagnose diseases. It explains how to identify and manage each disease, describing the symptoms, its importance, the source of infection and spread, and control measures. Based on the highly regarded 1993 edition of Diseases of Fruit Crops, this new work updates management practices that have evolved since then. Importantly, it contains the latest information on diseases that have recently emerged in Australia as well as exotic diseases that are biosecurity threats to Australian fruit and nut production.
Resumo:
Faecal Egg Count Reduction Tests (FECRTs) for macrocyclic lactone (ML) and levamisole (LEV) drenches were conducted on two dairy farms in the subtropical, summer rainfall region of eastern Australia to determine if anthelmintic failure contributed to severe gastrointestinal nematode infections observed in weaner calves. Subtropical Cooperia spp. were the dominant nematodes on both farms although significant numbers of Haemonchus placei were also present on Farm 2. On Farm 1, moxidectin pour-on (MXD) drenched at 0.5 mg kg-1 liveweight (LW) reduced the overall Cooperia burden by 82% (95% confidence limits, 37-95%) at day 7 post-drench. As worm burdens increased rapidly in younger animals in the control group (n = 4), levamisole was used as a salvage drench and these calves withdrawn from the trial on animal welfare grounds after sample collection at day 7. Levamisole (LEV) dosed at 6.8 mg kg-1 LW reduced the worm burden in these calves by 100%, 7 days after drenching. On Farm 2, MXD given at 0.5 mg kg-1 LW reduced the faecal worm egg count of cooperioids at day 8 by 96% (71-99%), ivermectin oral (IVM) at 0.2 mg kg-1 LW by 1.6% (-224 to 70%) and LEV oral at 7.1 mg kg-1 LW by 100%. For H. placei the reductions were 98% (85-99.7%) for MXD, 0.7% (-226 to 70%) for IVM and 100% for LEV. This is the first report in Australia of the failure of macrocyclic lactone treatments to control subtropical Cooperia spp. and suspected failure to control H. placei in cattle.
Resumo:
The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
Healthy hardwoods: A field guide to pests, diseases and nutritional disorders in subtropical hardwoods can be used to help identify the common damaging insects, fungi and nutritional disorders in young eucalypt (Eucalyptus and Corymbia species) plantations in subtropical eastern Australia. This guide includes photographs of each insect, fungus and nutritional disorder and the damage they cause, along with a brief description to aid identification. A brief host list for insects and fungi, including susceptibility and occurrence, is provided as a guide only. A hand lens will be useful, especially to identify fungi. Although it is possible to identify insects and fungi from these photographs, laboratory examination will sometimes be necessary. For example, microscopes and culturing media might be used to identify fungi. Information about four exotic pests and diseases has also been included in the Biosecurity threats chapter. Potentially, these would have a severe impact on plantation and natural forests if introduced into Australia. To prevent establishment of these pests, early detection and identification is crucial. If an exotic insect or disease is suspected, then an immediate response is required. Usually, the first response will be to contact the nearest Australian Quarantine and Inspection Service office or forestry agency to seek advice.
Resumo:
Development of disease management strategies for subtropical and tropical fruit based on natural resistance mechanisms.
Resumo:
Management of Papaya diseases in North Queensland.
Resumo:
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62x10(-)(9)-1.01x10(-)(1)(2)). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06-1.55, p = 8.9x10(-)(3)). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4x10(-)(8)(8)]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.
Resumo:
Virus diseases cause serious yield and quality losses in field grown cucurbit crops worldwide. In Australia, the main viruses of cucurbits are Papaya ringspot virus (PRSV), Squash mosaic virus (SqMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). Plants infected early have severely distorted fruit. High infection incidences, of ZYMV and PRSV in crops cause losses of marketable fruit of up to 100% and infected crops are often abandoned. Two new alternative hosts of ZYMV were identified, the native cucurbit Cucumis maderaspatanus and wild legume Rhyncosia minima. No new alternative hosts of PRSV, SqMV or WMV were found in Western Australia or Queensland. Seed transmission of ZYMV (0.7%) was found in seedlings grown from ZYMV-infected fruit of zucchini but not of pumpkin. None was detected with PRSV or SqMV in zucchini or pumpkin seedlings, respectively. ZYMV spread to pumpkins by aphids was greater downwind than upwind of a virus source. Delaying sowing by 2 weeks decreased ZYMV spread. Millet non-host barriers between pumpkin plantings slowed ZYMV infection. Host resistance gene (zym) in cucumber cultivars was effective against ZYMV. Pumpkin cultivars with resistance gene (Zym) became infected under high virus pressure but leaf symptoms were milder and infected plants higher yielding with more market-acceptable fruit than those without Zym. Most zucchini cultivars with Zym developed severe leaf and fruit symptoms. ZYMV, PRSV, WMV and SqMV spread readily from infected to healthy cucurbit plants by direct leaf contact. ZYMV survives and remains infective on diverse surfaces for up to 6 hours but can be inactivated by some disinfectants. Phylogenetic analysis indicates at least three separate introductions of ZYMV into Australia, with new introductions rarely occurring. ZYMV isolates clustered into three groups according to collection location i) Kununurra, ii) Northern Territory and iii) Carnarvon, Qld and Vic. A multiplex Real-Time PCR was developed which distinguished between the three groups of Australian isolates. Integrated disease management (IDM) strategies for virus diseases of vegetable cucurbit crops grown in the field were improved incorporating the new information gathered. These strategies are aimed at causing using minimal extra expense, labour demands and disruption to normal practices.
Resumo:
A major barrier to accessing healthcare services is spending, and the extended time that non-communicable diseases require treatment for means that many people around the world do not have proper access to care. Saval Khanal from Sankalpa Foundation, Nepal, Lennert Veerman and Samantha Hollingworth from the University of Queensland and Lisa Nissen from Queensland University of Technology lay out the results of their study and establish a method to forecast medicine use in Nepal.
Resumo:
The purpose of the report is to summarise progress in developing vegetable production systems with improved soil health that overcome soil limitations with the potential to suppress soil borne diseases. Management approaches to soil health improvement were regionally specific to overcome regional soil limitations in different production environments.