868 resultados para G protein-coupled receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The $\beta$-adrenergic receptor ($\beta$AR), which couples to G$\sb{\rm s}$ and activates adenylylcyclase, has been a prototype for studying the activation and desensitization of G-protein-coupled receptors. The main objective of the present study is to elucidate the molecular mechanisms of protein kinase-mediated desensitization and internalization of the $\beta$AR.^ Activation of cAPK or PKC causes a rapid desensitization of $\beta$AR stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellular loop of the $\beta$AR, RRSSK$\sp{263}$. To determine the role of the individual serines in the cAPK- and PKC-meditated desensitizations, wild type (WT) and mutant $\beta$ARs containing the substitutions, Ser$\sp{261} \to$ A, Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and Ser$\sp{261/262} \to$ A, were constructed and stably transfected into L cells. The cAPK-mediated desensitization was decreased 70-80% by the Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and the Ser$\sp{261/262} \to$ A mutations, but was not altered by the Ser$\sp{261} \to$ A substitution, demonstrating that Ser$\sp{262}$ was the primary site of the cAPK-induced desensitization. The PMA/PKC-induced desensitization was unaffected by either of the single serine to alanine substitutions, but was reduced 80% by the double serine to alanine substitution, suggesting that either serine was sufficient to confer the PKC-mediated desensitization. Coincident stimulation of cAPK and PKC caused an additive desensitization which was significantly reduced (80%) only by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and mutant receptors demonstrated that only one of the mutants, Ser$\sp{262} \to$ A, was partially uncoupled. The Ser$\sp{262} \to$ D mutation did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized state of the receptor.^ To accomplish the in vivo phosphorylation of the $\beta$AR, we used two epitope-modified $\beta$ARs, hemagglutinin-tagged $\beta$AR (HA-$\beta$AR) and 6 histidine-tagged $\beta$AR (6His-$\beta$AR), for a high efficiency purification of the $\beta$AR. Neither HA-$\beta$AR nor 6His-$\beta$AR altered activation and desensitization of the $\beta$AR significantly as compared to unmodified wild type $\beta$AR. 61% recovery of ICYP-labeled $\beta$AR was obtained with Ni-NTA column chromatography.^ The truncation 354 mutant $\beta$AR(T354), lacking putative $\beta$ARK site(s), displayed a normal epinephrine stimulation of adenylylcyclase. Although 1.0 $\mu$M epinephrine induced 60% less desensitization in T354 as compared to wild type $\beta$AR, 1.0 $\mu$M epinephrine-mediated desensitization in T354 was 35% greater than PGE$\sb1$-mediated desensitization, which is essentially identical in both WT and T354. These results suggested that sequences downstream of residue 354 may play a role in homologous desensitization and that internalization may be attributed to the additional desensitization besides the cAMP mechanism in T354 $\beta$AR. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. βγ subunits of heterotrimeric G proteins (Gβγ) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gβγ signaling (βARKct), we evaluated the role of Gβγ in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gβγ. Furthermore, we studied the effects of in vivo adenoviral-mediated βARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the βARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gβγ plays a critical role in physiological VSM proliferation, and targeted Gβγ inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-gated inward rectifier K+ (GIRK) channels mediate hyperpolarizing postsynaptic potentials in the nervous system and in the heart during activation of Gα(i/o)-coupled receptors. In neurons and cardiac atrial cells the time course for receptor-mediated GIRK current deactivation is 20–40 times faster than that observed in heterologous systems expressing cloned receptors and GIRK channels, suggesting that an additional component(s) is required to confer the rapid kinetic properties of the native transduction pathway. We report here that heterologous expression of “regulators of G protein signaling” (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native receptor → GIRK signal transduction pathway. GIRK current waveforms evoked by agonist activation of muscarinic m2 receptors or serotonin 1A receptors were dramatically accelerated by coexpression of either RGS1, RGS3, or RGS4, but not RGS2. For the brain-expressed RGS4 isoform, neither the current amplitude nor the steady-state agonist dose-response relationship was significantly affected by RGS expression, although the agonist-independent “basal” GIRK current was suppressed by ≈40%. Because GIRK activation and deactivation kinetics are the limiting rates for the onset and termination of “slow” postsynaptic inhibitory currents in neurons and atrial cells, RGS proteins may play crucial roles in the timing of information transfer within the brain and to peripheral tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3R cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins of the regulator of G protein signaling (RGS) family accelerate GTP hydrolysis by the α subunits (Gα) of G proteins, leading to rapid recovery of signaling cascades. Many different RGS proteins can accelerate GTP hydrolysis by an individual Gα, and GTP hydrolysis rates of different Gαs can be enhanced by the same RGS protein. Consequently, the mechanisms for specificity in RGS regulation and the residues involved remain unclear. Using the evolutionary trace (ET) method, we have identified a cluster of residues in the RGS domain that includes the RGS-Gα binding interface and extends to include additional functionally important residues on the surface. One of these is within helix α3, two are in α5, and three are in the loop connecting α5 and α6. A cluster of surface residues on Gα previously identified by ET, and composed predominantly of residues from the switch III region and helix α3, is spatially contiguous with the ET-identified residues in the RGS domain. This cluster includes residues proposed to interact with the γ subunit of Gtα's effector, cGMP phosphodiesterase (PDEγ). The proximity of these clusters suggests that they form part of an interface between the effector and the RGS-Gα complex. Sequence variations in these residues correlate with PDEγ effects on GTPase acceleration. Because ET identifies residues important for all members of a protein family, these residues likely form a general site for regulation of G protein-coupled signaling cascades, possibly by means of effector interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular lysophosphatidic acid (LPA) produces diverse cellular responses in many cell types. Recent reports of several molecularly distinct G protein-coupled receptors have raised the possibility that the responses to LPA stimulation could be mediated by the combination of several uni-functional receptors. To address this issue, we analyzed one receptor encoded by ventricular zone gene-1 (vzg-1) (also referred to as lpA1/edg-2) by using heterologous expression in a neuronal and nonneuronal cell line. VZG-1 expression was necessary and sufficient in mediating multiple effects of LPA: [3H]-LPA binding, G protein activation, stress fiber formation, neurite retraction, serum response element activation, and increased DNA synthesis. These results demonstrate that a single receptor, encoded by vzg-1, can activate multiple LPA-dependent responses in cells from distinct tissue lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotrophins regulate neuronal cell survival and synaptic plasticity through activation of Trk receptor tyrosine kinases. Binding of neurotrophins to Trk receptors results in receptor autophosphorylation and downstream phosphorylation cascades. Here, we describe an approach to use small molecule agonists to transactivate Trk neurotrophin receptors. Activation of TrkA receptors in PC12 cells and TrkB in hippocampal neurons was observed after treatment with adenosine, a neuromodulator that acts through G protein-coupled receptors. These effects were reproduced by using the adenosine agonist CGS 21680 and were counteracted with the antagonist ZM 241385, indicating that this transactivation event by adenosine involves adenosine 2A receptors. The increase in Trk activity could be inhibited by the use of the Src family-specific inhibitor, PP1, or K252a, an inhibitor of Trk receptors. In contrast to other G protein-coupled receptor transactivation events, adenosine used Trk receptor signaling with a longer time course. Moreover, adenosine activated phosphatidylinositol 3-kinase/Akt through a Trk-dependent mechanism that resulted in increased cell survival after nerve growth factor or brain-derived neurotrophic factor withdrawal. Therefore, adenosine acting through the A2A receptors exerts a trophic effect through the engagement of Trk receptors. These results provide an explanation for neuroprotective actions of adenosine through a unique signaling mechanism and raise the possibility that small molecules may be used to elicit neurotrophic effects for the treatment of neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic γ-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic P/Q-type Ca2+ channel currents via activation of G proteins, thereby attenuating transmitter release. To identify the heterotrimeric G protein subunits involved in this presynaptic inhibition, we loaded G protein βγ subunits (Gβγ) directly into the calyceal nerve terminal through whole-cell patch pipettes. Gβγ slowed the activation of presynaptic Ca2+ currents (IpCa) and attenuated its amplitude in a manner similar to the externally applied baclofen, a GABAB receptor agonist. The effects of both Gβγ and baclofen were relieved after strong depolarization of the nerve terminal. In addition, Gβγ partially occluded the inhibitory effect of baclofen on IpCa. In contrast, guanosine 5′-O-(3-thiotriphosphate)-bound Goα loaded into the calyx had no effect. Immunocytochemical examination revealed that the subtype of G proteins Go, but not the Gi, subtype, is expressed in the calyceal nerve terminal. These results suggest that presynaptic inhibition mediated by G protein-coupled receptors occurs primarily by means of the direct interaction of Go βγ subunits with presynaptic Ca2+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-molecule studies of the conformations of the intact β2 adrenergic receptor were performed in solution. Photon bursts from the fluorescently tagged adrenergic receptor in a micelle were recorded. A photon-burst algorithm and a Poisson time filter were implemented to characterize single molecules diffusing across the probe volume of a confocal microscope. The effects of molecular diffusion and photon number fluctuations were deconvoluted by assuming that Poisson distributions characterize the molecular occupation and photon numbers. Photon-burst size histograms were constructed, from which the source intensity distributions were extracted. Different conformations of the β2 adrenergic receptor cause quenching of the bound fluorophore to different extents and hence produce different photon-burst sizes. An analysis of the photon-burst histograms shows that there are at least two distinct substates for the native adrenergic membrane receptor. This behavior is in contrast to one peak observed for the dye molecule, rhodamine 6G. We test the reliability and robustness of the substate number determination by investigating the application of different binning criteria. Conformational changes associated with agonist binding result in a marked change in the distribution of photon-burst sizes. These studies provide insight into the conformational heterogeneity of G protein-coupled receptors in the presence and absence of a bound agonist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding.