942 resultados para Free Boundary Value Problem
Resumo:
In this article we develop a simple model to describe the evolution of a depositional wax layer on the inner surface of a circular pipe transporting heated oil, which contains dissolved wax. When the outer pipe surface is cooled sufficiently, the growth of a wax layer is initiated on the inner pipe wall, and this evolves to a saturated steady state thickness. The model proposed is based on fundamental balances of heat flow from the oil, into the wax layer, and across the pipe wall. We present an analysis of the model, examine a relevant asymptotic limit in which the full details of the solution to the model are available and develop an efficient numerical method (based on the method of fundamental solutions) for producing approximations of the model solution. The mathematical structure of the model is that of a free boundary evolution problem of generalised Stefan type. © The Author, 2014.
Resumo:
In this article we develop a simple model to describe the evolution of a depositional wax layer on the inner surface of a circular pipe transporting heated oil, which contains dissolved wax. When the outer pipe surface is cooled sufficiently, the growth of a wax layer is initiated on the inner pipe wall, and this evolves to a saturated steady state thickness. The model proposed is based on fundamental balances of heat flow from the oil, into the wax layer, and across the pipe wall. We present an analysis of the model, examine a relevant asymptotic limit in which the full details of the solution to the model are available and develop an efficient numerical method (based on the method of fundamental solutions) for producing approximations of the model solution. The mathematical structure of the model is that of a free boundary evolution problem of generalised Stefan type. © The Author, 2014.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
Цветан Д. Христов, Недю Ив. Попиванов, Манфред Шнайдер - Изучени са някои тримерни гранични задачи за уравнения от смесен тип. За уравнения от типа на Трикоми те са формулирани от М. Протер през 1952, като тримерни аналози на задачите на Дарбу или Коши–Гурса в равнината. Добре известно е, че новите задачи са некоректни. Ние формулираме нова гранична задача за уравнения от типа на Келдиш и даваме понятие за квазиругулярно решение на тази задача и на eдна от задачите на Протер. Намерени са достатъчни условия за единственост на такива решения.
Resumo:
2010 Mathematics Subject Classification: 35A23, 35B51, 35J96, 35P30, 47J20, 52A40.
Resumo:
MSC Subject Classification: 65C05, 65U05.
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
We present an analytical solution of a mixed boundary value problem for an unbounded 2D doubly periodic domain which is a model of a composite material with mixed imperfect interface conditions. We find the effective conductivity of the composite material with mixed imperfect interface conditions, and also give numerical analysis of several of their properties such as temperature and flux.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.
A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods
Resumo:
In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.
Resumo:
In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.