902 resultados para Finite-Difference Method
Resumo:
Numerical experiments using a finite difference method were carried out to determine the motion of axisymmetric Taylor vortices for narrow-gap Taylor vortex flow. When a pressure gradient is imposed on the flow the vortices are observed to move with an axial speed of 1.16 +/- 0.005 times the mean axial flow velocity. The method of Brenner was used to calculate the long-time axial spread of material in the flow. For flows where there is no pressure gradient, the axial dispersion scales with the square root of the molecular diffusion, in agreement with the results of Rosen-bluth et al. for high Peclet number dispersion in spatially periodic flows with a roll structure. When a pressure gradient is imposed the dispersion increases by an amount approximately equal to 6.5 x 10(-4) (W) over bar(2)d(2)/D-m, where (W) over bar is the average axial velocity in the annulus, analogous to Taylor dispersion for laminar flow in an empty tube.
Resumo:
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
In this study, a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid is presented. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The present research is a part of a study on the unsteady dynamics of an organic Rankine cycle power plant and it will be a part of a dynamic process model. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen was to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties has been used, because most of the calculation time is spent in calculating the fluid properties. The boiler was divided into elements. The values of the thermodynamic properties and mass flows were calculated in the nodes that connect the elements. Dynamic behaviour was limited to the process fluid and tube wall, and the heat source was regarded as to be steady. The elements that connect the preheater to thevaporiser and the vaporiser to the superheater were treated in a special way that takes into account a flexible change from one part to the other. The model consists of the calculation of the steady state initial distribution of the variables in the nodes, and the calculation of these nodal values in a dynamic state. The initial state of the boiler was received from a steady process model that isnot a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source and the process fluid. A brief examination of the oscillation around a steady state, the so-called Ledinegg instability, was done. This examination showed that the pressure drop in the boiler is a third degree polynomial of the mass flow rate, and the stability criterion is a second degree polynomial of the enthalpy change in the preheater. The numerical examination showed that oscillations did not exist in the example case. The dynamic boiler model was analysed for linear and step changes of the entering fluid temperatures and flow rates.The problem for verifying the correctness of the achieved results was that there was no possibility o compare them with measurements. This is why the only way was to determine whether the obtained results were intuitively reasonable and the results changed logically when the boundary conditions were changed. The numerical stability was checked in a test run in which there was no change in input values. The differences compared with the initial values were so small that the effects of numerical oscillations were negligible. The heat source side tests showed that the model gives results that are logical in the directions of the changes, and the order of magnitude of the timescale of changes is also as expected. The results of the tests on the process fluid side showed that the model gives reasonable results both on the temperature changes that cause small alterations in the process state and on mass flow rate changes causing very great alterations. The test runs showed that the dynamic model has no problems in calculating cases in which temperature of the entering heat source suddenly goes below that of the tube wall or the process fluid.
Resumo:
Pyörivien sähkökoneiden suunnittelussa terminen suunnittelu on yhtä tärkeää kuin sähköinen ja mekaaninen suunnittelukin. Tässä diplomityössä tarkoituksena on kehittää ilmajäähdytteisten kestomagneettigeneraattorien laskentaan soveltuva lämmönsiirtymismalli, jolla staattorin lämpötilajakauma voitaisiin selvittää. Kehitetty lämmönsiirtymismalli perustuu kolmiulotteiseen äärellisen erotuksen (finite difference) menetelmään. Malli ottaa huomioon lämmönjohtumisen staattorin aktiiviosissa ja konvektion jäähdytysilmavirtaan. Mallissa on myös yksinkertainen painehäviölaskenta jäähdytysjärjestelmän komponenttien mitoittamista varten. Laskentamallilla lasketaan esimerkkitapauksena 4,3 MW:n kestomagneettigeneraattorin jäähdytystä eri toimintapisteissä. Tuloksia verrataan CFD-mallinnuksen antamiin tuloksiin sekä kokeellisten mittausten antamiin tuloksiin.
Resumo:
Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)
Resumo:
A new geometry (semiannular) for Josephson junction has been proposed and theoretical studies have shown that the new geometry is useful for electronic applications [1, 2]. In this work we study the voltage‐current response of the junction with a periodic modulation. The fluxon experiences an oscillating potential in the presence of the ac‐bias which increases the depinning current value. We show that in a system with periodic boundary conditions, average progressive motion of fluxon commences after the amplitude of the ac drive exceeds a certain threshold value. The analytic studies are justified by simulating the equation using finite‐difference method. We observe creation and annihilation of fluxons in semiannular Josephson junction with an ac‐bias in the presence of an external magnetic field.
Resumo:
Techniques for modelling urban microclimates and urban block surfaces temperatures are desired by urban planners and architects for strategic urban designs at the early design stages. This paper introduces a simplified mathematical model for urban simulations (UMsim) including urban surfaces temperatures and microclimates. The nodal network model has been developed by integrating coupled thermal and airflow model. Direct solar radiation, diffuse radiation, reflected radiation, long-wave radiation, heat convection in air and heat transfer in the exterior walls and ground within the complex have been taken into account. The relevant equations have been solved using the finite difference method under the Matlab platform. Comparisons have been conducted between the data produced from the simulation and that from an urban experimental study carried out in a real architectural complex on the campus of Chongqing University, China in July 2005 and January 2006. The results show a satisfactory agreement between the two sets of data. The UMsim can be used to simulate the microclimates, in particular the surface temperatures of urban blocks, therefore it can be used to assess the impact of urban surfaces properties on urban microclimates. The UMsim will be able to produce robust data and images of urban environments for sustainable urban design.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.