992 resultados para Finite Field
Resumo:
Monte Carlo field-theoretic simulations (MCFTS) are performed on melts of symmetric diblock copolymer for invariant polymerization indexes extending down to experimentally relevant values of N̅ ∼ 10^4. The simulations are performed with a fluctuating composition field, W_−(r), and a pressure field, W_+(r), that follows the saddle-point approximation. Our study focuses on the disordered-state structure function, S(k), and the order−disorder transition (ODT). Although shortwavelength fluctuations cause an ultraviolet (UV) divergence in three dimensions, this is readily compensated for with the use of an effective Flory−Huggins interaction parameter, χ_e. The resulting S(k) matches the predictions of renormalized one-loop (ROL) calculations over the full range of χ_eN and N̅ examined in our study, and agrees well with Fredrickson−Helfand (F−H) theory near the ODT. Consistent with the F−H theory, the ODT is discontinuous for finite N̅ and the shift in (χ_eN)_ODT follows the predicted N̅^−1/3 scaling over our range of N̅.
Resumo:
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background held at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for (0 + 1)-dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the Schwinger model at finite temperature and show that a temperature dependent chiral anomaly may arise from the long distance behavior of the electric field. At high temperature this anomaly depends linearly on the temperature T and is present not only in the two point function, but also in all even point amplitudes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A novel concept of quantum turbulence in finite size superfluids, such as trapped bosonic atoms, is discussed. We have used an atomic (87)Rb Bose-Einstein condensate (BEC) to study the emergence of this phenomenon. In our experiment, the transition to the quantum turbulent regime is characterized by a tangled vortex lines formation, controlled by the amplitude and time duration of the excitation produced by an external oscillating field. A simple model is suggested to account for the experimental observations. The transition from the non-turbulent to the turbulent regime is a rather gradual crossover. But it takes place in a sharp enough way, allowing for the definition of an effective critical line separating the regimes. Quantum turbulence emerging in a finite-size superfluid may be a new idea helpful for revealing important features associated to turbulence, a more general and broad phenomenon. [GRAPHICS] Amplitude versus elapsed time diagram of magnetically excited BEC superfluid, presenting the evolution from the non-turbulent regime, with well separated vortices, to the turbulent regimes, with tangled vortices (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Let F be an algebraically closed field and let A and B be arbitrary finite dimensional simple algebras over F. We prove that A and B are isomorphic if and only if they satisfy the same identities.
Resumo:
The usual design of field-emission displays (FEDs) often results in high vacuum pressure gradients inside the glass plates of the device, and this is the main limitation to the widespread availability of large area FEDs. In this paper, we perform theoretical calculations using the finite element method for determining the pressure distributions in several pumping configurations, including a new FED configuration known as porous FED or pFED. The approach here is capable of clarifying the design issues influencing the final pressure relevant to the field-emission display devices. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic D-p-brane with an external field.