958 resultados para FLOW-INJECTION
Resumo:
The field of flow injection potentiometry (FIP) is reviewed and its current status assessed. The research development and application of electrodes in flow injection systems are presented and discussed.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
A spectrophotometric flow injection analysis (FIA) procedure employing natural urease enzyme source for the determination of urea in animal blood plasma was developed. Among leguminous plants used in the Brazilian agriculture, the Cajanus cajan specie was selected as urease source considering its efficiency and availability. A minicolumn was filled with leguminous fragments and coupled to the FIA manifold, where urea was on-line converted to ammonium ions and subsequently it was quantified by spectrophotometry. The system was employed to determine urea in animal plasma samples without any prior treatment. Accuracy was assessed by comparison results with those obtained employing the official procedure and no significant difference at 90 % confidence level was observed. Other profitable features such as an analytical throughput of 30 determinations per hour, a reagent consumption of 19.2 mg sodium salicylate, 0.5 mg sodium hipochloride and a relative standard deviation of 1.4 % (n= 12) were also obtained.
Resumo:
An important component for the automation of flow injection analysis (FIA) systems is the sample injection valve. A simple and inexpensive commutator with 16 pinch valves (8 normally open and 8 closed) was developed and configured as a multichannel injection valve. It is activated by a single solenoid of 3 Kgf, powered by a pulsed driver circuit, controlled by a microcomputer or a switch. FIA with spectrophometric detection of potassium dichromate solution was used for the evaluation of the new injection valve and its comparison with other valves, for sample loops of 50, 100, 200, 300 and 500 muL. The repeatability was favorable (RSD 1.0% for 15 injections at each loop volume) compared to a manual injector, an electropneumatic injector and an injector configured with three mini solenoid valves (RSD 1.1, 1.3 and 1.0%, respectively, for15 injections at each loop volume).
Resumo:
Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA) systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar) indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.
Resumo:
This paper presents an automatic procedure employing a reagent in the form of a slurry in a flow-injection system. The feasibility of the proposal is demonstrated by sulphate determination in water using the Barium Chloranilate method, which is based on the precipitation of barium sulphate. The release of a stoichiometric amount of highly colored chloranilic ions is monitored at 528 nm. The reaction is carried out in alcoholic medium in order to reduce the solubility of the reagent. A considerable improvement in the sensitivity is attained by adding ferric ions to the released chloranilic ions. An on-line filtration step to separate the excess reagent from the released chloranilic ions was necessary. In addition, a column containing a cation exchange resin was included in the manifold to remove potentially interfering ions. The proposed procedure is suitable for 30 determinations per hour and the relative standard deviation is less than 2%. The analytical curve is linear between 0.0 and 40 mg L-1 and the determination limit is about 2.0 mg L-1SO4(2-). Accuracy was confirmed by running several samples already analysed by a standard turbidimetric procedure.
Resumo:
A flow injection spectrophotometric procedure is proposed for the determination of paracetamol (acetaminophen) in pharmaceutical formulations. Powdered and liquid samples were previously dissolved/diluted in 0.05 mol L-1 hydrochloric acid solution and a volume of 250 µL was injected directly into a carrier stream of this same acid solution, flowing at 2.5 mL min-1. Paracetamol reacts with sodium hypochlorite forming N-acetyl-p-benzoquinoneimine which then reacts with sodium salicylate in sodium hydroxide solution yielding a blue indophenol dye which was measured at 640 nm in the pH range of 9.5-10.0. Paracetamol was determined in pharmaceutical products in the 1.0 to 100.0 mg L-1 (3.3x10-6 a 6.6x10-4 mol L-1) concentration range, with a detection limit of 0.5 mg L-1 (1.6x10-6 mol L-1). The recovery of this analyte in five samples ranged from 98.0 to 103.6 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1% for paracetamol concentrations of 25.0, 50.0 and 75.0 mg L-1 (n=10). A paired t-test showed that all results obtained for paracetamol in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A review about the state-of-the-art of flow injection analysis (FIA) -- capillary electrophoresis (CE) systems is presented. The basic principles of flow injection and capillary electrophoresis are briefly revised. The main aspects of the FIA-CE hybridization, including advantages and shortcomings, are discussed. Some applications involving all different designs are also presented. This review covers the literature from 1997 up to 2000.
Resumo:
This article describes the current status of several analytical methodologies using vegetal tissue and crude extracts as enzymatic source. In this divulgation paper the obtention of vegetal crude extract and/or tissue and selected enzymatic procedures are presented emphasizing its characteristics and peculiarities. Examples of many biosensors and/or flow injection procedures using vegetal tissues or crude extracts for the determination of many analytes, such as amines, ascorbic acid, ethanol, glutamate, hydrogen peroxide, oxalic acid, pectins, phenolic compounds and urea of biologic, environmental, food, pharmaceutical and industrial interests are also given and discussed.
Resumo:
A flow injection spectrophotometric procedure was developed for the determination of metamizol in pharmaceutical formulations. The system is based on the reaction between metamizol and triiodide generated in the system by mixing iodate and iodide-starch solutions. The absorbance of triiodide-starch complex giving a steady-state baseline value which was monitored at 580 nm. The inverse peaks caused by metamizol samples were measured and there was a direct relationship between absorbance decreasing and metamizol concentration from 1.4 x 10-4 to 7.0 x 10-4 mol L-1. The RSD was 0.45 % for a metamizol solution 4.2 x 10-4 mol L-1 (n = 10) with a detection limit (three-fold blank standard deviation/slope) of 6.0 x 10-5 mol L-1 The feasibility of the system was demonstrated for the determination of metamizol in commercial samples with sixty results obtained per hour. The results obtained for metamizol in pharmaceutical formulations using the proposed flow procedure and those obtained using an iodimetric procedure are in agreement at the 95% confidence level and within an acceptable range of error.
Resumo:
This technical note describes a new and simple electronic circuit for driving solenoid valves. The circuit is based on a single integrated circuit DRV103, which is able to drive resistive or inductive loads up to 1.5 A. Switching of 12-V loads can be controlled by TTLlevel signals in two distinct steps. Initially, 12 V is applied during 110 ms, followed by 4.2 V RMS until the end of the activation TTL pulse. This mode of operation is particularly suitable to drive solenoids, because it requires a higher voltage to start and a lower maintenance voltage. By using this circuit, power consumption and heating are reduced and the solenoid lifetime is enhanced. Moreover, this circuit is specially appropriated to build computercontrolled solenoid valves systems.
Resumo:
An automatic flow injection procedure for spectrophotometric aluminium determination in purified water and solutions containing high salts concentrations used for hemodyalisis treatment was developed. The method was base on reaction of Al3+ with cianine eriochrome R (ECR) after preconcentration using the AG50W-X8 cationic-exchange resin. Elution was carried out using a 1 % (m/v) calcium chloride solution. The manifold comprised an automatic proporcional injector controlled by a computer equipped with an eletronic interface and software written in QuicBASIC 4.5 with facilities to control the injector and perform data acquisition. Samples with concentration ranging from 4.96 to 19.90 µg L-1 Al were analyzed and recoveries between 88 and 113% were obtained by using the standard addition method. Other profitable analytical characteristics such as a relative standard deviation 1.3 % (n = 10) for a typical sample 14.5 µg L-1 Al, a linear response ranging up to 60.0 µg L-1Al, and a sampling throughput of 10 determinations per hour were achieved. A detection limit of 4.2 µg L-1 Al was estimated as suggested by IUPAC.
Resumo:
The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry) is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.
Resumo:
In this work, a spectrophotometric flow injection analysis system using a crude extract of avocado (Persea americana) as a source of polyphenol oxidase to dopamine determination was developed. The substrates and enzyme concentrations from 2.4x10-7 to 5.3x10-4 mol L-1 and 28 to 332 units mL-1 were evaluated, respectively. In addition, the FIA parameters such as sample loop (50 to 500 µL), flow rate (1.4 to 4.3 mL min-1) and reactor length (100 to 500 cm) were also evaluated in a 0.1 mol L-1 phosphate buffer solution (pH 7.0). Dopamine solution concentrations were determined using 277 units mL-1 enzyme solution, 400 mL enzyme loop, 375 µL sample loop, 2.2 mL min-1 flow rate and a reactor of 350 cm. The analytical curve showed a linearity from 5.3x10-5 to 5.3x10-4 mol L-1 dopamine with a detection limit of 1.3x10-5 mol L-1. The analytical frequency was 46 h-1 and the RSD lower than 0.5% for 5.3x10-4 mol L-1 dopamine solution (n=10). A paired t-test showed that all results obtained for dopamine in commercial formulations using the proposed flow injection procedure and a spectrophotometric procedure agree at the 95% confidence level.
Resumo:
In this work two procedures were proposed for analytical curves construction using a single standard solution employing a flow injection system with solid phase spectrophotometric detection (FI-SPS). A flow cell contends the chromogenic reagent 1-(2-tiazolylazo)-2-naphtol was positioned on the optical path. The first procedure was based on controlled concentration of analyte on solid phase and the relations between absorbance and the total volume of injected allowed the calculation of analyte concentration. The second procedure was developed employing controlled dispersion/retention in flow system where analyte concentration was obtained by exploiting the relation between transient signals of samples and single standard solution at equivalent reading time. The procedures were successfully applied for zinc determination in synthetic solutions with good precision and accuracy at 95% confidence level.