906 resultados para Exploratory statistical data analysis
Resumo:
data analysis table
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
This article reflects on key methodological issues emerging from children and young people's involvement in data analysis processes. We outline a pragmatic framework illustrating different approaches to engaging children, using two case studies of children's experiences of participating in data analysis. The article highlights methods of engagement and important issues such as the balance of power between adults and children, training, support, ethical considerations, time and resources. We argue that involving children in data analysis processes can have several benefits, including enabling a greater understanding of children's perspectives and helping to prioritise children's agendas in policy and practice. (C) 2007 The Author(s). Journal compilation (C) 2007 National Children's Bureau.
Resumo:
The principle aim of this research is to elucidate the factors driving the total rate of return of non-listed funds using a panel data analytical framework. In line with previous results, we find that core funds exhibit lower yet more stable returns than value-added and, in particular, opportunistic funds, both cross-sectionally and over time. After taking into account overall market exposure, as measured by weighted market returns, the excess returns of value-added and opportunity funds are likely to stem from: high leverage, high exposure to development, active asset management and investment in specialized property sectors. A random effects estimation of the panel data model largely confirms the findings obtained from the fixed effects model. Again, the country and sector property effect shows the strongest significance in explaining total returns. The stock market variable is negative which hints at switching effects between competing asset classes. For opportunity funds, on average, the returns attributable to gearing are three times higher than those for value added funds and over five times higher than for core funds. Overall, there is relatively strong evidence indicating that country and sector allocation, style, gearing and fund size combinations impact on the performance of unlisted real estate funds.
Resumo:
The rapid growth of non-listed real estate funds over the last several years has contributed towards establishing this sector as a major investment vehicle for gaining exposure to commercial real estate. Academic research has not kept up with this development, however, as there are still only a few published studies on non-listed real estate funds. This paper aims to identify the factors driving the total return over a seven-year period. Influential factors tested in our analysis include the weighted underlying direct property returns in each country and sector as well as fund size, investment style gearing and the distribution yield. Furthermore, we analyze the interaction of non-listed real estate funds with the performance of the overall economy and that of competing asset classes and found that lagged GDP growth and stock market returns as well as contemporaneous government bond rates are significant and positive predictors of annual fund performance.