959 resultados para Expenditure-based segmentation
Resumo:
Skin water loss of preterm infants, nursed naked in incubators under thermoneutral conditions, was assessed by a method based on the measurement of water vapor pressure gradient close to the skin surface. The corresponding skin evaporative heat loss was calculated using an energy equivalent of 0.58 kcal/g water vaporised. During the first 5 weeks of life, 128 sets of measurements were made on 56 infants whose gestational age ranged from 28 to 37 weeks. In the first week of life, infants of less than 30 weeks of gestation had substantially higher transepidermal water loss (TEWL) and skin evaporative heat loss (skin EHL) (41.5 +/- 11.5 g/kg X day TEWL; 24.1 +/- 6.5 kcal/kg X day skin EHL) than infants of 34 weeks and greater (11.1 +/- 4.1 g/kg X day; 6.4 +/- 2.4 kcal/kg X day). Infants of 30-33 weeks of gestation had intermediate values (22.4 +/- 7.6 g/kg X day; 13 +/- 4.4 kcal/kg X day). From the third week of life on, TEWL was similar for all preterm infants, i.e. 14.2 +/- 2.6 to 12.7 +/- 1.9 g/kg X day and corresponds to skin EHL of 8.2 +/- 1.5 to 7.4 +/- 1.1 kcal/kg X day. There was a significant inverse relationship between gestational age and TEWL and also between postnatal age and TEWL. In an additional group of 7 preterm infants (30-34 weeks of gestation, mean postnatal age of 21 +/- 9 days) transepidermal water loss and energy expenditure were measured simultaneously. The skin evaporative heat loss (8.8 +/- 2.5 kcal/kg X day) accounted for 17 +/- 5% of energy expenditure (53.3 +/- 4.1 kcal/kg X day). This study emphasizes that in infants of less than 30 weeks of gestation, the transepidermal water loss is of great importance and makes a major contribution to water and heat balances.
Resumo:
This article analyses different factors that influence the purchasing behaviour of online supermarket customers. These factors are related to both the appearance of the website as well as the processes that take place when making the purchase. Based on these analyses, the various groups of consumers with homogenous behaviour are studied and positioned according to their attitudes. The analysis also allows the quality of the service offered by this kind of establishment to be defined, as well as the main dimensions in which it develops. In the conclusions, factors which should influence the manager of an online supermarket to improve the quality of its service are given
Resumo:
We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.
Resumo:
Many Spanish destinations are now considering low cost airlines (LCA) important for attracting tourists. However, there is little evidence on the characteristics travelers using low cost airlines and their flight preferences. Typical segmentation of air travelers are business versus leisure travelers and business versus tourist fares. The aim of this paper is to obtain a deeper understanding of the demand of LCA through a segmentation analysis, based on 808 foreign travelers who used Girona airport, that focuses on low cost travelers’ valuations of different flight attributes and trip related characteristics
Analysing the competitive advantage of Internet based marketing research company starting in Finland
Resumo:
The purpose of this master's thesis was to analyse a competitive advantage of an Internet based marketing research company based on a competitive strategy oriented way. First Internet panel was compared to mostly used marketing research method, telephone interview. Secondly fourteen potential clients were interviewed personally. Intention was to find out what the potential clients thinkabout Zapera Finland Ltd and what kind of competitive strategy could be chosen considering costs, product differentiation, competition, research method, segmentation of business line and substitution. Finally the interviews were analysed and some strategic suggestions were made based on the competitive advatage(s). Conclusion was that Zapera Finland Ltd can choose a competitive strategy based on both the cost advantage and the product differentiation in a narrow competition scope.
Resumo:
This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.
Resumo:
Paperin pinnan karheus on yksi paperin laatukriteereistä. Sitä mitataan fyysisestipaperin pintaa mittaavien laitteiden ja optisten laitteiden avulla. Mittaukset vaativat laboratorioolosuhteita, mutta nopeammille, suoraan linjalla tapahtuville mittauksilla olisi tarvetta paperiteollisuudessa. Paperin pinnan karheus voidaan ilmaista yhtenä näytteelle kohdistuvana karheusarvona. Tässä työssä näyte on jaettu merkitseviin alueisiin, ja jokaiselle alueelle on laskettu erillinen karheusarvo. Karheuden mittaukseen on käytetty useita menetelmiä. Yleisesti hyväksyttyä tilastollista menetelmää on käytetty tässä työssä etäisyysmuunnoksen lisäksi. Paperin pinnan karheudenmittauksessa on ollut tarvetta jakaa analysoitava näyte karheuden perusteella alueisiin. Aluejaon avulla voidaan rajata näytteestä selvästi karheampana esiintyvät alueet. Etäisyysmuunnos tuottaa alueita, joita on analysoitu. Näistä alueista on muodostettu yhtenäisiä alueita erilaisilla segmentointimenetelmillä. PNN -menetelmään (Pairwise Nearest Neighbor) ja naapurialueiden yhdistämiseen perustuvia algoritmeja on käytetty.Alueiden jakamiseen ja yhdistämiseen perustuvaa lähestymistapaa on myös tarkasteltu. Segmentoitujen kuvien validointi on yleensä tapahtunut ihmisen tarkastelemana. Tämän työn lähestymistapa on verrata yleisesti hyväksyttyä tilastollista menetelmää segmentoinnin tuloksiin. Korkea korrelaatio näiden tulosten välillä osoittaa onnistunutta segmentointia. Eri kokeiden tuloksia on verrattu keskenään hypoteesin testauksella. Työssä on analysoitu kahta näytesarjaa, joidenmittaukset on suoritettu OptiTopolla ja profilometrillä. Etäisyysmuunnoksen aloitusparametrit, joita muutettiin kokeiden aikana, olivat aloituspisteiden määrä ja sijainti. Samat parametrimuutokset tehtiin kaikille algoritmeille, joita käytettiin alueiden yhdistämiseen. Etäisyysmuunnoksen jälkeen korrelaatio oli voimakkaampaa profilometrillä mitatuille näytteille kuin OptiTopolla mitatuille näytteille. Segmentoiduilla OptiTopo -näytteillä korrelaatio parantui voimakkaammin kuin profilometrinäytteillä. PNN -menetelmän tuottamilla tuloksilla korrelaatio oli paras.
Resumo:
PURPOSE: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. METHODS AND MATERIALS: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. RESULTS: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. CONCLUSION: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Exploring Different Types of Sharing: A Proposed Segmentation of the Market for "Sharing Businesses"
Resumo:
Sharing instead of buying is regaining traction among today's consumers. This study aims at identifying segments of sharing consumers to unearth potentially viable clusters of a consumer behavior that is a market of growing economic relevance. By means of a qualitative study and a survey with a roughly representative sample of 1121 Swiss-German and German consumers, a set of trait-related, motivational, and perceived socioeconomic variables is identified that can be used to group individuals into segments that differ with regard to their approach to sharing. A cluster analysis based on these variables suggests four potential clusters of sharing consumers-sharing idealists, sharing opponents, sharing pragmatists, and sharing normatives. Two sets of testable propositions are derived that can guide further research in this domain and pave the way to a more targeted approach to the growing market of "sharing" businesses.
Resumo:
Markkinasegmentointi nousi esiin ensi kerran jo 50-luvulla ja se on ollut siitä lähtien yksi markkinoinnin peruskäsitteistä. Suuri osa segmentointia käsittelevästä tutkimuksesta on kuitenkin keskittynyt kuluttajamarkkinoiden segmentointiin yritys- ja teollisuusmarkkinoiden segmentoinnin jäädessä vähemmälle huomiolle. Tämän tutkimuksen tavoitteena on luoda segmentointimalli teollismarkkinoille tietotekniikan tuotteiden ja palveluiden tarjoajan näkökulmasta. Tarkoituksena on selvittää mahdollistavatko case-yrityksen nykyiset asiakastietokannat tehokkaan segmentoinnin, selvittää sopivat segmentointikriteerit sekä arvioida tulisiko tietokantoja kehittää ja kuinka niitä tulisi kehittää tehokkaamman segmentoinnin mahdollistamiseksi. Tarkoitus on luoda yksi malli eri liiketoimintayksiköille yhteisesti. Näin ollen eri yksiköiden tavoitteet tulee ottaa huomioon eturistiriitojen välttämiseksi. Tutkimusmetodologia on tapaustutkimus. Lähteinä tutkimuksessa käytettiin sekundäärisiä lähteitä sekä primäärejä lähteitä kuten case-yrityksen omia tietokantoja sekä haastatteluita. Tutkimuksen lähtökohtana oli tutkimusongelma: Voiko tietokantoihin perustuvaa segmentointia käyttää kannattavaan asiakassuhdejohtamiseen PK-yritys sektorilla? Tavoitteena on luoda segmentointimalli, joka hyödyntää tietokannoissa olevia tietoja tinkimättä kuitenkaan tehokkaan ja kannattavan segmentoinnin ehdoista. Teoriaosa tutkii segmentointia yleensä painottuen kuitenkin teolliseen markkinasegmentointiin. Tarkoituksena on luoda selkeä kuva erilaisista lähestymistavoista aiheeseen ja syventää näkemystä tärkeimpien teorioiden osalta. Tietokantojen analysointi osoitti selviä puutteita asiakastiedoissa. Peruskontaktitiedot löytyvät mutta segmentointia varten tietoa on erittäin rajoitetusti. Tietojen saantia jälleenmyyjiltä ja tukkureilta tulisi parantaa loppuasiakastietojen saannin takia. Segmentointi nykyisten tietojen varassa perustuu lähinnä sekundäärisiin tietoihin kuten toimialaan ja yrityskokoon. Näitäkään tietoja ei ole saatavilla kaikkien tietokannassa olevien yritysten kohdalta.
Resumo:
Background: There is growing evidence suggesting that prolonged sitting has negative effects on people's weight, chronic diseases and mortality. Interventions to reduce sedentary time can be an effective strategy to increase daily energy expenditure. The purpose of this study is to evaluate the effectiveness of a six-month primary care intervention to reduce daily of sitting time in overweight and mild obese sedentary patients. Method/Design: The study is a randomized controlled trial (RCT). Professionals from thirteen primary health care centers (PHC) will randomly invite to participate mild obese or overweight patients of both gender, aged between 25 and 65 years old, who spend 6 hours at least daily sitting. A total of 232 subjects will be randomly allocated to an intervention (IG) and control group (CG) (116 individuals each group). In addition, 50 subjects with fibromyalgia will be included. Primary outcome is: (1) sitting time using the activPAL device and the Marshall questionnaire. The following parameters will be also assessed: (2) sitting time in work place (Occupational Sitting and Physical Activity Questionnaire), (3) health-related quality of life (EQ-5D), (4) evolution of stage of change (Prochaska and DiClemente's Stages of Change Model), (5) physical inactivity (catalan version of Brief Physical Activity Assessment Tool), (6) number of steps walked (pedometer and activPAL), (7) control based on analysis (triglycerides, total cholesterol, HDL, LDL, glycemia and, glycated haemoglobin in diabetic patients) and (8) blood pressure and anthropometric variables. All parameters will be assessed pre and post intervention and there will be a follow up three, six and twelve months after the intervention. A descriptive analysis of all variables and a multivariate analysis to assess differences among groups will be undertaken. Multivariate analysis will be carried out to assess time changes of dependent variables. All the analysis will be done under the intention to treat principle. Discussion: If the SEDESTACTIV intervention shows its effectiveness in reducing sitting time, health professionals would have a low-cost intervention tool for sedentary overweight and obese patients management.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms