991 resultados para Escultura teoría s.XVI
Resumo:
Esta investigación desarrolla material curricular para la implementación de algunas cuestiones de teoría de juegos en la educación secundaria en el ámbito de la matemática discreta. Para ello se diseñan actividades de carácter formativo que potencien valores de justicia, cooperación, negociación y convivencia democrática. Se trata de dar a conocer algunos modelos estratégicos que se pueden convertir en herramientas útiles para la resolución de conflictos en la vida cotidiana y, así, desarrollar las amplias posibilidades que aporta esta rama de las matemáticas.
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.
Resumo:
Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
Con Frecuencia encontramos artículos que hablan sobre los radicales cambios de la educación matemática y cómo esta se sigue enseñando de la misma forma y con el mismo enfoque que hace más de cien años. Lo que no se encuentra son propuestas nuevas ni textos que permitan otro enfoque de la materia. El siguiente artículo pretende mostrar una nueva propuesta para las aulas de clase. Usando un tema tan “sencillo” como es La Teoría de Grafos se quiere mostrar una opción de trabajo para estudiantes de educación media que permita abrir camino a problemas muy complicados partiendo de enunciados sencillos cuya solución es más cercana a un juego que a una demostración matemática.
Resumo:
Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.
Resumo:
El presente texto muestra una investigación que trabaja la enseñanza-aprendizaje de aspectos asociados al límite como aproximación optima, desde un análisis teórico (apoyado en APOE) que parte de una descomposición genética del objeto límite y brinda los primeros indicios de las construcciones mentales que poseen los estudiantes, luego se complementa con un parte de diseño e implementación de actividades en el aula con el ciclo de enseñanza ACE. Como la base es una investigación sobre la propia práctica del docente, se trata de un primer avance en este campo, lo que implica un estudio abierto a cualquier persona que requiera ampliarlo y/o complementarlo.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
En este artículo se analiza la posición que ocupa Laplace en el desarrollo de la teoría clásica de la probabilidad. Se hace en el marco de los 200 años de la publicación del "Essai philosophique sur les probabilités". El artículo se divide en las siguientes secciones: en la primera se introducen algunas de las características de las matemáticas del periodo. En la segunda, se presentan algunos de los desarrollos fundamentales en la teoría de la probabilidad alcanzados durante los siglos XVII y XVIII. Finalmente, presentamos algunas de las principales contribuciones de Laplace. En general, se considera que con Laplace la teoría clásica de la probabilidad adquiere su forma definitiva.
Resumo:
Energy levels and radiative rates for fine-structure transitions in nickel ions (Ni XIII-XVI) have been calculated using the GRASP code. Configuration interaction and relativistic effects have been included, and comparisons are made with available data. Energy levels and radiative rates are tabulated for transitions among the 48, 43, 32, and 84 levels of Ni XIII, Ni XIV, Ni XV, and Ni XVI, respectively. The energy levels are assessed to be accurate to better than 5% for a majority of levels, while oscillator strengths for all strong transitions are accurate to better than 20%. (C) 2003 Published by Elsevier Inc.
Resumo:
The configuration-interaction method as implemented in the computer code CIV3 is used to determine energy levels, electric dipole radiative transition wavelengths, oscillator strengths and transition probabilities for inner-shell excitation of transitions in Fe XV and Fe XVI. Specifically, transitions are considered of the type 1s(2) 2s(2) 2p(6) 3s(2) -1s(2) 2s(2) 2p(5) 3l3l' 3l" (l, l' and l" = s,p or d) in FeXV and 1s(2) 2s(2) 2p(6) 3s- 1s(2) 2s(2) 2p(5) 3l3l' (l and l' = s,p or d) in FeXVI, using the relativistic Breit-Pauli approach. An assessment of the accuracy of the derived atomic data is performed.
Resumo:
Energy levels for transitions among the lowest 24 fine- structure levels belonging to the 1s(2)nl(n greater than or equal to 5) configurations of Li-like Ar XVI and Fe XXIV have been calculated using the fully relativistic GRASP code. Oscillator strengths, radiative rates and line strengths have also been generated among these levels for the four types of transitions: electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2). Comparisons are made for the electric dipole transitions with other available results, and the accuracy of the present data is assessed.
Resumo:
Aims. In this paper we report calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions in Fe XVI. Methods. For energy levels and radiative rates we have used the General purpose Relativistic Atomic Structure Package ( grasp), and for the compuations of collision strengths the Dirac Atomic R-matrix Code (darc) has been adopted. Results. Energies for the lowest 39 levels among the n