894 resultados para Enhanced oil recovery
Resumo:
Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.
Resumo:
Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.
Resumo:
Objectives: To evaluate the efficacy and safety of enhanced recovery after surgery (ERAS) programs in elective open surgical repair (OSR) of abdominal aortic aneurysm (AAA).Background: Open surgical repair of AAA is associated with high morbidity and mortality, prolonged hospital stay and high costs. ERAS programs contribute to the optimization of treatment by reducing hospital stay and improving clinical outcomes.Methods: A review of PubMed, EMBASE and LILACS databases was conducted. As only one randomized controlled trial was found, a pooled analysis of proportions from case series was conducted, considering it a complementary overview of the topic. Inclusion criteria were case series with more than five cases reported, adult patients who underwent an elective OSR of AAA and use of an ERAS program. ERAS was compared to conventional perioperative care. The pooled proportion and the confidence interval (CI) are shown for each outcome. The overlap of the CI suggests similar effect of the interventions studied.Results: Thirteen case series studies with ERAS involving 1,250 patients were compared to six case series with conventional care with a total of 1,429 patients. The pooled, respective proportions for ERAS and conventional care were: mortality, 1.51% [95% CI: 0.0091, 0.0226] and 3.0% [95% CI 0.0183, 0.0445]; and incidence of complications, 3.82% [95% CI 0.0259, 0.0528] and 4.0% [95% CI 0.03, 0.05].Conclusion: This review shows that ERAS and conventional care therapies have similar mortality and complication rates in OSR of AAA.
Resumo:
In a retrospective analysis with two readers blinded to the clinical information, coronal short tau inversion recovery (STIR) images were compared to contrast-enhanced fat-saturated T1-weighted imaging (T1 CEfs) in 51 cases of cervical lymphoma. Interrater reliability was good to excellent. Although sensitivity and subjective quality of the STIR sequence were higher than those of the T1 CEfs sequence (sensitivity 85%/72%, respectively), specificity (82%/95%) as well as positive likelihood ratio (4.65/15.93) was much lower. Therefore, contrast-enhanced sequences should be included in the primary staging of lymphoma.
Resumo:
The delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique has shown promising results in pilot clinical studies of early osteoarthritis. Currently, its broader acceptance is limited by the long scan time and the need for postprocessing to calculate the T1 maps. A fast T1 mapping imaging technique based on two spoiled gradient echo images was implemented. In phantom studies, an appropriate flip angle combination optimized for center T1 of 756 to 955 ms yielded excellent agreement with T1 measured using the inversion recovery technique in the range of 200 to 900 ms, of interest in normal and diseased cartilage. In vivo validation was performed by serially imaging 26 hips using the inversion recovery and the Fast 2 angle T1 mapping techniques (center T1 756 ms). Excellent correlation with Pearson correlation coefficient R2 of 0.74 was seen and Bland-Altman plots demonstrated no systematic bias.
Resumo:
BACKGROUND The diagnostic value of a contrast-enhanced T2-weighted FLAIR sequence (ceFLAIR) in brain imaging is unclear. HYPOTHESIS/OBJECTIVES That the number of brain lesions detected with ceFLAIR would be no greater than the sum of lesions detected with nFLAIR and ceT1W sequence. ANIMALS One hundred and twenty-nine animals (108 dogs and 21 cats) undergoing magnetic resonance imaging (MRI) of the head between July 2010 and October 2011 were included in the study. METHODS A transverse ceFLAIR was added to a standard brain MRI protocol. Presence and number of lesions were determined based on all available MRI sequences by 3 examiners in consensus and lesion visibility was evaluated for nFLAIR, ceFLAIR, and ceT1W sequences. RESULTS Eighty-three lesions (58 intra-axial and 25 extra-axial) were identified in 51 patients. Five lesions were detected with nFLAIR alone, 2 with ceT1W alone, and 1 with ceFLAIR alone. Significantly higher numbers of lesions were detected using ceFLAIR than nFLAIR (76 versus 67 lesions; P = 0.04), in particular for lesions also detected with ceT1W images (53 versus 40; P =.01). There was no significant difference between the number of lesions detected with combined nFLAIR and ceT1W sequences compared to those detected with ceFLAIR (82 versus 76; P =.25). CONCLUSION AND CLINICAL IMPORTANCE Use of ceFLAIR as a complementary sequence to nFLAIR and ceT1W sequences did not improve the detection of brain lesions and cannot be recommended as part of a routine brain MRI protocol in dogs and cats with suspected brain lesions.
Resumo:
CONTEXT Enhanced Recovery after Surgery (ERAS) programs are multimodal care pathways that aim to decrease intra-operative blood loss, decrease postoperative complications, and reduce recovery times. OBJECTIVE To overview the use and key elements of ERAS pathways, and define needs for future clinical trials. EVIDENCE ACQUISITION A comprehensive systematic MEDLINE search was performed for English language reports published before May 2015 using the terms "postoperative period," "postoperative care," "enhanced recovery after surgery," "enhanced recovery," "accelerated recovery," "fast track recovery," "recovery program," "recovery pathway", "ERAS," and "urology" or "cystectomy" or "urologic surgery." EVIDENCE SYNTHESIS We identified 18 eligible articles. Patient counseling, physical conditioning, avoiding excessive alcohol and smoking, and good nutrition appeared to protect against postoperative complications. Fasting from solid food for only 6h and perioperative liquid-carbohydrate loading up to 2h prior to surgery appeared to be safe and reduced recovery times. Restricted, balanced, and goal-directed fluid replacement is effective when individualized, depending on patient morbidity and surgical procedure. Decreased intraoperative blood loss may be achieved by several measures. Deep vein thrombosis prophylaxis, antibiotic prophylaxis, and thermoregulation were found to help reduce postsurgical complications, as was a multimodal approach to postoperative nausea, vomiting, and analgesia. Chewing gum, prokinetic agents, oral laxatives, and an early resumption to normal diet appear to aid faster return to normal bowel function. Further studies should compare anesthetic protocols, refine analgesia, and evaluate the importance of robot-assisted surgery and the need/timing for drains and catheters. CONCLUSIONS ERAS regimens are multidisciplinary, multimodal pathways that optimize postoperative recovery. PATIENT SUMMARY This review provides an overview of the use and key elements of Enhanced Recovery after Surgery programs, which are multimodal, multidisciplinary care pathways that aim to optimize postoperative recovery. Additional conclusions include identifying effective procedures within Enhanced Recovery after Surgery programs and defining needs for future clinical trials.
Resumo:
Issued May 1977.
Resumo:
Bibliography: p. 271.