583 resultados para Engenharia eletrica - Matematica
Resumo:
This work presents a model of bearingless induction machine with divided winding. The main goal is to obtain a machine model to use a simpler control system as used in conventional induction machine and to know its behavior. The same strategies used in conventional machines were used to reach the bearingless induction machine model, which has made possible an easier treatment of the involved parameters. The studied machine is adapted from the conventional induction machine, the stator windings were divided and all terminals had been available. This method does not need an auxiliary stator winding for the radial position control which results in a more compact machine. Another issue about this machine is the variation of inductances array also present in result of the rotor displacement. The changeable air-gap produces variation in magnetic flux and in inductances consequently. The conventional machine model can be used for the bearingless machine when the rotor is centered, but in rotor displacement condition this model is not applicable. The bearingless machine has two sets of motor-bearing, both sets with four poles. It was constructed in horizontal position and this increases difficulty in implementation. The used rotor has peculiar characteristics; it is projected according to the stator to yield the greatest torque and force possible. It is important to observe that the current unbalance generated by the position control does not modify the machine characteristics, this only occurs due the radial rotor displacement. The obtained results validate the work; the data reached by a supervisory system corresponds the foreseen results of simulation which verify the model veracity
Resumo:
In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast. These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal
Resumo:
This work presents a proposal for a voltage and frequency control system for a wind power induction generator. It has been developed na experimental structure composes basically by a three phase induction machine, a three phase capacitor and a reactive static Power compensator controlled by histeresys. lt has been developed control algorithms using conventional methods (Pl control) and linguistic methods (using concepts of logic and fuzzy control), to compare their performances in the variable speed generator system. The control loop was projected using the ADJDA PCL 818 model board into a Pentium 200 MHz compu ter. The induction generator mathematical model was studied throught Park transformation. It has been realized simulations in the Pspice@ software, to verify the system characteristics in transient and steady-state situations. The real time control program was developed in C language, possibilish verify the algorithm performance in the 2,2kW didatic experimental system
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this work we present a new clustering method that groups up points of a data set in classes. The method is based in a algorithm to link auxiliary clusters that are obtained using traditional vector quantization techniques. It is described some approaches during the development of the work that are based in measures of distances or dissimilarities (divergence) between the auxiliary clusters. This new method uses only two a priori information, the number of auxiliary clusters Na and a threshold distance dt that will be used to decide about the linkage or not of the auxiliary clusters. The number os classes could be automatically found by the method, that do it based in the chosen threshold distance dt, or it is given as additional information to help in the choice of the correct threshold. Some analysis are made and the results are compared with traditional clustering methods. In this work different dissimilarities metrics are analyzed and a new one is proposed based on the concept of negentropy. Besides grouping points of a set in classes, it is proposed a method to statistical modeling the classes aiming to obtain a expression to the probability of a point to belong to one of the classes. Experiments with several values of Na e dt are made in tests sets and the results are analyzed aiming to study the robustness of the method and to consider heuristics to the choice of the correct threshold. During this work it is explored the aspects of information theory applied to the calculation of the divergences. It will be explored specifically the different measures of information and divergence using the Rényi entropy. The results using the different metrics are compared and commented. The work also has appendix where are exposed real applications using the proposed method
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
This work proposes the development of an intelligent system for analysis of digital mammograms, capable to detect and to classify masses and microcalcifications. The digital mammograms will be pre-processed through techniques of digital processing of images with the purpose of adapting the image to the detection system and automatic classification of the existent calcifications in the suckles. The model adopted for the detection and classification of the mammograms uses the neural network of Kohonen by the algorithm Self Organization Map - SOM. The algorithm of Vector quantization, Kmeans it is also used with the same purpose of the SOM. An analysis of the performance of the two algorithms in the automatic classification of digital mammograms is developed. The developed system will aid the radiologist in the diagnosis and accompaniment of the development of abnormalities
Resumo:
This work proposes the specification of a new function block according to Foundation Fieldbus standards. The new block implements an artificial neural network, which may be useful in process control applications. The specification includes the definition of a main algorithm, that implements a neural network, as well as the description of some accessory functions, which provide safety characteristics to the block operation. Besides, it also describes the block attributes emphasizing its parameters, which constitute the block interfaces. Some experimental results, obtained from an artificial neural network implementation using actual standard functional blocks on a laboratorial FF network, are also shown, in order to demonstrate the possibility and also the convenience of integrating a neural network to Fieldbus devices
Resumo:
A 2.5D ray-tracing propagation model is proposed to predict radio loss in indoor environment. Specifically, we opted for the Shooting and Bouncing Rays (SBR) method, together with the Geometrieal Theory of Diffrartion (GTD). Besides the line-of-sight propagation (LOS), we consider that the radio waves may experience reflection, refraction, and diffraction (NLOS). In the Shooting and Bouncing Rays (SBR) method, the transmitter antenna launches a bundle of rays that may or may not reach the receiver. Considering the transmitting antenna as a point, the rays will start to launch from this position and can reach the receiver either directly or after reflections, refractions, diffractions, or even after any combination of the previous effects. To model the environment, a database is built to record geometrical characteristics and information on the constituent materials of the scenario. The database works independently of the simulation program, allowing robustness and flexibility to model other seenarios. Each propagation mechanism is treated separately. In line-of-sight propagation, the main contribution to the received signal comes from the direct ray, while reflected, refracted, and diffracted signal dominate when the line-of-sight is blocked. For this case, the transmitted signal reaches the receiver through more than one path, resulting in a multipath fading. The transmitting channel of a mobile system is simulated by moving either the transmitter or the receiver around the environment. The validity of the method is verified through simulations and measurements. The computed path losses are compared with the measured values at 1.8 GHz ftequency. The results were obtained for the main corridor and room classes adjacent to it. A reasonable agreement is observed. The numerical predictions are also compared with published data at 900 MHz and 2.44 GHz frequencies showing good convergence
Resumo:
abstract
Resumo:
This work proposes the development of a Computer System for Analysis of Mammograms SCAM, that aids the doctor specialist in the identification and analysis of existent lesions in digital mammograms. The computer system for digital mammograms processing will make use of a group of techniques of Digital Image Processing (DIP), with the purpose of aiding the medical professional to extract the information contained in the mammogram. This system possesses an interface of easy use for the user, allowing, starting from the supplied mammogram, a group of processing operations, such as, the enrich of the images through filtering techniques, the segmentation of areas of the mammogram, the calculation the area of the lesions, thresholding the lesion, and other important tools for the medical professional's diagnosis. The Wavelet Transform will used and integrated into the computer system, with the objective of allowing a multiresolution analysis, thus supplying a method for identifying and analyzing microcalcifications
Resumo:
ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations
Resumo:
The main purpose of this dissertation, consists of the study and analysis of the PBG (Photonic Band Gap )..tecnology incorporated in optical fiber structures. So, we'l1 present a complete PBG structure theory, and folowing this, we'l1 present also a chapter for convencional optical fiber, due to the need to construct the base theory of them, and latter a more complete work about photonic crystal fiber. Finaly, we'l1 show the results of the signals , dispersion, and obtained curves under the right dimensions according to the required signals, for convencional optical and photonic crystal fiber. Knowing that PBG crystals with low losses act as perfect mirrors for forbidden frequences and knowing that the persence of structures of PBG as substrates, brings some desirable characteristics such as spontaneous emition supression and superficial waves. We' 11 show according to these characteristics its applications in telecomunication. Therefore, the enphasis of this work is to show that the optical fibers are the only practible thing to integrate the enormous quantity of data and video at intemet' s market, developing, manipulating, changing, and multiplexing the optical fibers chanels in an area where we expect that the photonic crystals has an important hole, since the photonic crystals can be projected and made to avoid losses in the bands of certain wavelength which permits the increase in efficiency ofthe optical components projected with crystals. A sequence of this work would be the utilisation of the PBG structures in the new system of optical network without fiber developed by Bell laboratories of the lucent tecnology, last year using light rays for transmiting information through the air. The new system of optical networks without fiber will permit sending the data of 15 cd-rooms in less then one second, what represents 65 times more information than those transmitted through the actual radio frequences
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time