902 resultados para Energy Release Rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the present study is to develop fully renewable and environmentally benign techniques for improving the fire safety of flexible polyurethane foams (PUFs). A multilayered coating made from cationic chitosan (CS) and anionic alginate (AL) was deposited on PUFs through layer-by-layer assembly. This coating system exhibits a slight influence on the thermal stability of PUF, but significantly improves the char formation during combustion. Cone calorimetry reveals that 10 CS-AL bilayers (only 5.7% of the foams weight) lead to a 66% and 11% reduction in peak heat release rate and total heat release, respectively, compared with those of the uncoated control. The notable decreased fire hazards of PUF are attributed to the CS-AL coatings being beneficial to form an insulating protective layer on the surface of burning materials that inhibits the oxygen and heat permeation and slows down the flammable gases in the vapor phase, and thereby improves the flame resistance. This water-based, environmentally benign natural coating will stimulate further efforts in improving fire safety for a variety of polymer substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiac arrhythmias are a frequent cause of death and morbidity. Conventional antiarrhythmia therapy involving oral or intravenous medication is often ineffective and complicated by drug-associated side effects. Previous studies from our laboratory have demonstrated the advantages of cardiac drug-polymer implants for enhanced efficacy for cardiac arrhythmia therapy compared with conventional administration. However, these studies were based on systems that deliver drugs at a fixed release rate. Modulation of the drug delivery rate has the advantage of regulating the amount of the drug delivered depending upon the disease state of the patient. We hypothesized that iontophoresis could be used to modulate cardiac drug delivery. In this study, we report our investigations of a cardiac drug implant in dogs that is capable of iontophoretic modulation of the administration of the antiarrhythmic agent sotalol. We used a heterogeneous cation-exchange membrane (HCM) as an electrically sensitive and highly efficient rate-limiting barrier on the cardiac-contacting surface of the implant. Thus, electric current is passed only through the HCM and not the myocardium. The iontophoretic cardiac implant demonstrated in vitro drug release rates that were responsive to current modulation. In vivo results in dogs have confirmed that iontophoresis resulted in regional coronary enhancement of sotalol levels with current-responsive increases in drug concentrations. We also observed acute current-dependent changes in ventricular effective refractory periods reflecting sotalol-induced refractoriness due to regional drug administration. In 30-day dog experiments, iontophoretic cardiac implants demonstrated robust sustained function and reproducible modulation of drug delivery kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992-2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Price increases seem to be an adequate way to improve the earnings of companies. This fact becomes especially crucial because of increased price competition in many markets. Price increases might lead to negative customer reactions, such as a lower perceived utility or a lower loyalty intention. Therefore, the question for managers remains how prices can be increased without losing customers. Results of our experimental study suggest that customers of energy suppliers rate the perceived utility of the offer relatively better when the price increase is combined with an additional modification of the product or accompanied by a new service. It becomes clear that intensifying service relations can offset the negative effects of price increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation and characterisation of collagen:PCL composites for manufacture of tissue engineered skin substitutes and models are reported. Films having collagen:PCL (w/w) ratios of 1:4, 1:8 and 1:20 were prepared by impregnation of lyophilised collagen mats by PCL solutions followed by solvent evaporation. In vitro assays of collagen release and residual collagen content revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the composite that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. DSC analysis revealed the characteristic melting point of PCL at around 60°C and a tendency for the collagen component, at high loading, to impede crystallinity development within the PCL phase. The preparation of fibroblast/composite constructs was investigated using cell culture as a first stage in mimicking the dermal/epidermal structure of skin. Fibroblasts were found to attach and proliferate on all the composites investigated reaching a maximum of 2×105/cm2 on 1:20 collagen:PCL materials at day 8 with cell numbers declining thereafter. Keratinocyte growth rates were similar on all types of collagen:PCL materials investigated reaching a maximum of 6.6×104/cm2 at day 6. The results revealed that composite films of collagen and PCL are favourable substrates for growth of fibroblasts and keratinocytes and may find utility for skin repair. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral intensity profile, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this talk, we review our recent progress on the realisation of different regimes of pulse generation in passively mode-locked fibre lasers through control of the in-cavity propagation dynamics. We report on the possibility to achieve both parabolic self-similar and triangular pulse shaping in a mode-locked fibre laser via adjustment of the net normal dispersion and integrated gain of the cavity [1]. We also show that careful control of the gain/loss parameters of a net-normal dispersion laser cavity provides the means of achieving switching among Gaussian pulse, dissipative soliton and similariton pulse solutions in the cavity [2,3]. Furthermore, we report on our recent theoretical and experimental studies of pulse shaping by inclusion of an amplitude and phase spectral filter into the cavity of a laser. We numerically demonstrate that a mode-locked fibre laser can operate in dif- ferent pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [4]. An application of technique using a flat-top spectral filter is demonstrated to achieve the direct generation of sinc-shaped optical Nyquist pulses of high quality and of a widely tuneable bandwidth from the laser [5]. We also report on a recently-developed versa- tile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soli- ton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [6]. References: 1. S. Boscolo and S. K. Turitsyn, Phys. Rev. A 85, 043811 (2012). 2. J. Peng et al., Phys. Rev. A 86, 033808 (2012). 3. J. Peng, Opt. Express 24, 3046-3054 (2016). 4. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438-441 (2014). 5. S. Boscolo, C. Finot, and S. K. Turitsyn, IEEE Photon. J. 7, 7802008 (2015). 6. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).