982 resultados para Electronic structure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phosphine ruthenate complexes containing the non-innocent ligands 4-chloro-1,2-phenylenediamine (opda-CI) and 3,3',4,4'-tetraamminebiphenyl (diopda) were synthesized and characterized by means of X-ray diffraction, electrochemistry, P-31{H-1} NMR and electronic spectroscopies. Crystals of cis-[RuCl2 (dppb)(bqdi-CI)] complex were isolated as a mixture of two conformational isomers due to different positions of the chlorine atoms of the o-phenylene ligand in relation to the P1 atom of the phosphine moiety. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, using first-principles electronic structure calculations within the spin density functional theory, alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2) n (SnO2) n superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10 are studied. A half-metallic behavior is observed for the (CrO2) n (SnO2) n SLs for all values of n. The ground state is found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized when on top of SnO2, the authors suggest that (CrO2) n (SnO2) n SLs may be applied to spintronic technologies since they provide efficient spin-polarized carriers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ordinary yet unique, water is the substance on which life is based. Water seems, at first sight, to be a very simple molecule, consisting of two hydrogen atoms attached to one oxygen. Its small size belies the complexity of its action and its numerous anomalies, central to a broad class of important phenomena, ranging from global current circulation, terrestrial water and CO2 cycles to corrosion and wetting. The explanation of this complex behavior comes from water's unique ability to form extensive three-dimensional networks of hydrogen-bonds, whose nature and structures, in spite of a great deal of efforts involving a plethora of experimental and theoretical techniques, still lacks a complete scientific understanding. This thesis is devoted to the study of the local structure of hydrogen-bonded liquids, with a particular emphasis on water, taking advantage of a combination of core-level spectroscopies and density functional theory spectra calculations. X-ray absorption, in particular, is found to be sensitive to the local hydrogen-bond environment, thus offering a very promising tool for spectroscopic identification of specific structural configurations in water, alcohols and aqueous solutions. More specifically, the characteristic spectroscopic signature of the broken hydrogen-bond at the hydrogen side is used to analyze the structure of bulk water, leading to the finding that most molecules are arranged in two hydrogen-bond configurations, in contrast to the picture provided by molecular dynamics simulations. At the liquid-vapor interface, an interplay of surface sensitive measurements and theoretical calculations enables us to distinguish a new interfacial species in equilibrium with the gas. In a similar approach the cluster form of the excess proton in highly concentrated acid solutions and the different coordination of methanol at the vacuum interface and in the bulk can also be clearly identified. Finally the ability of core-level spectroscopies, aided by sophisticated density functional theory calculations, to directly probe the valence electronic structure of a system is used to observe the nature of the interaction between water molecules and solvated ions in solution. Water around transition metal ions is found to interact with the solute via orbital mixing with the metal d-orbitals. The hydrogen-bond between water molecules is explained in terms of electrostatic interactions enhanced by charge rehybridization in which charge transfer between connecting molecules is shown to be fundamental.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water is one of the most common compounds on earth and is essential for all biological activities. Water has, however, been a mystery for many years due to the large number of unusual chemical and physical properties, e.g. decreased volume during melting and maximum density at 4 °C. The origin of the anomalies behavior is the nature of the hydrogen bond. This thesis will presented an x-ray absorption spectroscopy (XAS) study to reveal the hydrogen bond structure in liquid water. The x-ray absorption process is faster than a femtosecond and thereby reflects the molecular orbital structure in a frozen geometry locally around the probed water molecules. The results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms. The molecular arrangement in the first coordination shell of liquid water is actually very similar as the two-hydrogen-bonded configurations at the surface of ice. This discovery suggests that most molecules in liquid water have two-hydrogen-bonded configurations with one donor and one acceptor hydrogen bond compared to the four-hydrogen-bonded tetrahedral structure in ice. This result is controversial since the general picture is that the structure of liquid water is very similar to the structure of ice. The results are, however, consistent with x-ray and neutron diffraction data but reveals serious discrepancies with structures based on current molecular dynamics simulations. The two-hydrogen-bond configuration in liquid water is rigid and heating from 25 °C to 90 °C introduce a minor change in the hydrogen-bonded configurations. Furthermore, XAS studies of water in aqueous solutions show that ion hydration does not affect the hydrogen bond configuration of the bulk. Only water molecules in the close vicinity to the ions show changes in the hydrogen bond formation. XAS data obtained with fluorescence yield are sensitive enough to resolved electronic structure of water molecules in the first hydration sphere and to distinguish between different protonated species. Hence, XAS is a useful tool to provide insight into the local electronic structure of a hydrogen-bonded liquid and it is applied for the first time on water revealing unique information of high importance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this thesis is to further the understanding of the structural, electronic and magnetic properties of ternary inter-metallic compounds using density functional theory (DFT). Four main problems are addressed. First, a detailed analysis on the ternary Heusler compounds is made. It has long been known that many Heusler compounds ($X_2YZ$; $X$ and $Y$ transition elements, $Z$ main group element) exhibit interesting half-metallic and ferromagnetic properties. In order to understand these, the dependence of magnetic and electronic properties on the structural parameters, the type of exchange-correlation functional and electron-electron correlation was examined. It was found that almost all Co$_2YZ$ Heusler compounds exhibit half-metallic ferromagnetism. It is also observed that $X$ and $Y$ atoms mainly contribute to the total magnetic moment. The magnitude of the total magnetic moment is determined only indirectly by the nature of $Z$ atoms, and shows a trend consistent with Slater-Pauling behaviour in several classes of these compounds. In contrast to experiments, calculations give a non-integer value of the magnetic moment in certain Co$_2$-based Heusler compounds. To explain deviations of the calculated magnetic moment, the LDA+$U$ scheme was applied and it was found that the inclusion of electron-electron correlation beyond the LSDA and GGA is necessary to obtain theoretical description of some Heusler compounds that are half-metallic ferromagnets. The electronic structure and magnetic properties of substitutional series of the quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si were investigated under LDA+$U$. The calculated band structure suggest that the most stable compound in a half-metallic state will occur at an intermediate Fe concentration. These calculated findings are qualitatively confirmed by experimental studies. Second, the effect of antisite disordering in the Co$_2$TiSn system was investigated theoretically as well as experimentally. Preservation of half-metallicity for Co$_2$TiSn was observed with moderate antisite disordering and experimental findings suggest that the Co and Ti antisites disorder amounts to approximately 10~% in the compound. Third, a systematic examination was carried out for band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18-electron or half-metallic ferromagnet half-Heusler compounds. It was found that the most appropriate description of these compounds from the viewpoint of electronic structures is one of a $YZ$ zinc blende lattice stuffed by the $X$ ion. Simple valence rules are obeyed for bonding in the 8- and 18-electron compounds. Fourth, hexagonal analogues of half-Heusler compounds have been searched. Three series of compounds were investigated: GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP. GdPdSb is suggested as a possible half-metallic weak ferromagnet at low temperature. GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP were investigated because they exhibit interesting bonding, structural and magnetic properties. The results qualitatively confirm experimental studies on magnetic and structural behaviour in GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP compounds. ~

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1 - 4, M representing a late transition metal from groups 8 - 12, and E belonging to groups 13 - 15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E = In, Cd, Mg), GdPdSb, GdNiSb, REAuSn (RE = Gd, Er, Tm) and RENiBi (RE = Pr, Sm, Gd - Tm, Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a negative GMR. Inhomogeneous nonmagnetic LuNiBi samples show no negative GMR, but a large positive MR of 27.5% at room temperature, which is interesting for application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diese Dissertation ist in zwei Teile aufgeteilt: Teil 1 befasst sich mit der Vorhersage von Halb-Metallizität in quarternären Heuslerverbindungen und deren Potential für Spintronik-Anwendungen. Teil 2 befasst sich mit den strukturellen Eigenschaften der Mn2-basierenden Heuslerverbindungen und dem Tuning von ihrer magnetischen Eigenschaften bzgl. Koerzitivfeldstärke und Remanenz. Diese Verbindungen sind geeignet für Spin-Transfer Torque-Anwendungen.rnrnIn Teil 1 wurden die folgenden drei Probenserien quarternärer Heuslerverbindungen untersucht: XX´MnGa (X = Cu, Ni und X´ = Fe, Co), CoFeMnZ (Z = Al, Ga, Si, Ge) und Co2−xRhxMnZ (Z = Ga, Sn, Sb). Abgesehen von CuCoMnGa wurden alle diese Verbindungen mittels ab-initio Bandstrukturrechnungen als halbmetallische Ferromagnete prognostiziert. In der XX´MnGa-Verbindungsklasse besitzt NiFeMnGa zwar eine zu niedrige Curie-Temperatur für technologische Anwendungen, jedoch NiCoMnGa mit seiner hohen Spinpolarisation, einem hohen magnetischen Moment und einer hohen Curie-Temperatur stellt ein neues Material für Spintronik-Anwendungen dar. Alle CoFeMnZ-Verbindungen kristallisieren in der kubischen Heuslerstruktur und ihre magnetischen Momente folgen der Slater-Pauling-Regel, was Halbmetalizität und eine hohe Spinpolarisation impliziert. Die ebenfalls hohen Curie-Temperaturen ermöglichen einen Einsatz weit über Raumtemperatur hinaus. In der strukturellen Charakterisierung wurde festgestellt, dass sämtliche Co2−xRhxMnZ abgesehen von CoRhMnSn verschiedene Typen von Unordnung aufweisen; daher war die ermittelte Abweichung von der Slater-Pauling-Regel sowie von der 100%-igen Spinpolarisation dieser Verbindungen zu erwarten. Die Halbmetallizität der geordneten CoRhMnSn-Verbindung sollte nach den durchgeführten magnetischen Messungen vorhanden sein.rnrnIm zweiten Teil wurden Mn3−xCoxGa und Mn2−xRh1+xSn synthetisiert und charakterisiert. Es wurde gezeigt, dass Mn3−xCoxGa im Bereich x = 0.1 − 0.4 in einer tetragonal verzerrten inversen Heuslerstruktur kristallisiert und im Bereich x = 0.6−1 in einer kubisch inversen Heuslerstruktur. Während die tetragonalen Materialien hartmagnetisch sind und Charakeristika aufweisen, die typischerweise für Spin-Transfer Torque-Anwengungen attraktiv sind, repräsentieren die weichmagnetischen kubischen Vertreter die 100% spinpolarisierten Materialien, die der Slater-Pauling-Regel folgen. Mn2RhSn kristallisiert in der inversen tetragonal verzerrten Heuslerstruktur, weist einernhartmagnetische Hystereseschleife auf und folgt nicht der Slater-Pauling-Regel. Bei hohen Rh-Gehalt wird die kubische inverse Heuslerstruktur gebildet. Alle kubischen Proben sind weichmagnetisch und folgen der Slater-Pauling-Regel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a detailed theoretical study of geometries, electronic structure, and energies of transition states and intermediates completing the full Bergman cycloaromatization pathway of ortho-substituted enediynes with a focus on polar and steric contributions to the kinetics and thermodynamics of hydrogen abstraction. This study provides a rare unambiguous example of remote substitution that affects reactivity of a neutral reactive intermediate through an σ framework.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).