926 resultados para Electro-acoustics
Resumo:
We investigated the electrochemical oxidation of glycerol on low-index Pt single crystals in acidic media (H2SO4 and HClO4) by cyclic voltammetry and Fourier Transform Infrared (FTIR) spectroscopy and we verified that this is a surface sensitive reaction. Pt(100) and Pt(110) surface structures favor the breaking of the C-C-C bond at low potentials (say 0.05 V), as seen by the formation of CO, one of the adsorbed residues of the glycerol dissociation, which poisons these surfaces even at high potentials. Pt(111) surface structure does not favor the C-C-C bond breaking at potentials as low as 0.05 V. However, Pt(111) is less poisoned by residues of glycerol dissociation and, for this reason, it is more active for glycerol oxidation than Pt(100) and Pt(110) at low potentials. Carbonyl containing compounds and CO2 were detected as reaction products of the glycerol oxidation on all investigated single-crystal Pt surfaces. The ratio between CO2 and carbonyl containing compounds is clearly much higher for Pt(100) and Pt(110) than for Pt(111). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Although electrochemical oxidation of simple organic molecules on metal catalysts is the basic ingredient of fuel cells, which have great technological potential as a renewable source of electrical energy, the detailed reaction mechanisms are in most cases not completely understood. Here, we investigate the ethanol-platinum interface in acidic aqueous solution using infrared-visible sum frequency generation (SFG) spectroscopy and theoretical calculations of vibrational spectra in order to identify the intermediates present during the electro-oxidation of ethanol. The complex vibrational spectrum in the fingerprint region imply on the coexistence of several adsorbates. Based on spectra in ultra-high-vacuum (UHV) and electrochemical environment from the literature and our density functional theory (DFT) calculations of vibrational spectra, new adsorbed intermediates, never before observed with conventional infrared (IR) spectroscopy, are proposed here: g2-acetaldehyde, g2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol derivative, COH residue, g2-formaldehyde, mono and bidentate formate, CH3 and CH2 residues. In addition, we present new evidences for an ethoxy intermediate, a secondary ethanol derivative and an acetyl species, and we confirm the presence of previously observed adsorbates: a tertiary ethanol derivative, bidentate acetate, and COad. These results indicate that the platinum surface is much more reactive, and the reaction mechanism for ethanol electro-oxidation is considerably more complex than previously considered. This might be also true for many other molecule-catalyst systems.
Resumo:
Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.
Resumo:
In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.
Resumo:
Iron was electro-deposited from a ferrous chloride bath. Studies were made of deposits formed when current density was varied, and finally when both current density and temperature were changed. An attempt was made to lay the ground work for a long range study of the chloride bath, and to determine the most simple conditions possible for obtaining a smooth, even, and thick deposit.
Resumo:
For enhanced immersion into a virtual scene more than just the visual sense should be addressed by a Virtual Reality system. Additional auditory stimulation appears to have much potential, as it realizes a multisensory system. This is especially useful when the user does not have to wear any additional hardware, e.g., headphones. Creating a virtual sound scene with spatially distributed sources requires a technique for adding spatial cues to audio signals and an appropriate reproduction. In this paper we present a real-time audio rendering system that combines dynamic crosstalk cancellation and multi-track binaural synthesis for virtual acoustical imaging. This provides the possibility of simulating spatially distributed sources and, in addition to that, near-to-head sources for a freely moving listener in room-mounted virtual environments without using any headphones. A special focus will be put on near-to-head acoustics, and requirements in respect of the head-related transfer function databases are discussed.
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.