534 resultados para EPITOPES
Resumo:
A safe, effective, and inexpensive vaccine against typhoid and other Salmonella diseases is urgently needed. In order to address this need, we are developing a novel vaccine platform employing buoyant, self-adjuvanting gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1, bioengineered to display highly conserved Salmonella enterica antigens. As the initial antigen for testing, we selected SopB, a secreted inosine phosphate effector protein injected by pathogenic S. enterica bacteria during infection into the host cells. Two highly conserved sopB gene segments near the 3'- region, named sopB4 and sopB5, were each fused to the grIpC gene, and resulting SopB-GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and SopB5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of SopB-GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ApmrG-H111-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-y, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Thl response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were also found to be stable at elevated temperatures for extended periods without refrigeration. The results show that bioengineered GVNPs are likely to represent a valuable platform for antigen delivery and development of improved vaccines against Salmonella and other diseases.
Resumo:
Following transmission, HIV-1 adapts in the new host by acquiring mutations that allow it to escape from the host immune response at multiple epitopes. It also reverts mutations associated with epitopes targeted in the transmitting host but not in the new host. Moreover, escape mutations are often associated with additional compensatory mutations that partially recover fitness costs. It is unclear whether recombination expedites this process of multi-locus adaptation. To elucidate the role of recombination, we constructed a detailed population dynamics model that integrates viral dynamics, host immune response at multiple epitopes through cytotoxic T lymphocytes, and viral evolution driven by mutation, recombination, and selection. Using this model, we compute the expected waiting time until the emergence of the strain that has gained escape and compensatory mutations against the new host's immune response, and reverted these mutations at epitopes no longer targeted. We find that depending on the underlying fitness landscape, shaped by both costs and benefits of mutations, adaptation proceeds via distinct dominant pathways with different effects of recombination, in particular distinguishing escape and reversion. When adaptation at a single epitope is involved, recombination can substantially accelerate immune escape but minimally affects reversion. When multiple epitopes are involved, recombination can accelerate or inhibit adaptation depending on the fitness landscape. Specifically, recombination tends to delay adaptation when a purely uphill fitness landscape is accessible at each epitope, and accelerate it when a fitness valley is associated with each epitope. Our study points to the importance of recombination in shaping the adaptation of HIV-1 following its transmission to new hosts, a process central to T cell-based vaccine strategies. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
Alpha-synuclein (Snca) plays a major role in Parkinson disease (PD). Circulating anti-Snca antibodies has been described in PD patients and healthy controls, but they have been poorly characterized. This study was designed to assess the prevalence of anti-Snca reactivity in human subjects carrying the LRRK2 mutation, idiopathic PD (iPD) patients, and healthy controls and to map the epitopes of the anti-Snca antibodies. Antibodies to Snca were detected by ELISA and immunoblotting using purified recombinant Snca in plasma from individuals carrying LRRK2 mutations (104), iPD patients (59), and healthy controls (83). Epitopes of antibodies were mapped using recombinant protein constructs comprising different regions of Snca. Clear positive anti-Snca reactivity showed no correlation with age, sex, years of evolution, or the disability scores for PD patients and anti-Snca reactivity was not prevalent in human patients with other neurological or autoimmune diseases. Thirteen of the positive individuals were carriers of LRRK2 mutations either non-manifesting (8 out 49 screened) or manifesting (5 positive out 55), three positive (out of 59) were iPD patients, and five positive (out of 83) were healthy controls. Epitope mapping showed that antibodies against the N-terminal (a.a. 1-60) or C-terminal (a.a. 109-140) regions of Snca predominate in LRRK2 mutation carriers and iPD patients, being N122 a critical amino acid for recognition by the anti-C-terminal directed antibodies. Anti-Snca circulating antibodies seem to cluster within families carrying the LRRK2 mutation indicating possible genetic or common environmental factors in the generation of anti-Snca antibodies. These results suggest that case-controls' studies are insufficient and further studies in family cohorts of patients and healthy controls should be undertaken, to progress in the understanding of the possible relationship of anti-Snca antibodies and PD patholog
Resumo:
A doença de Chagas é uma zoonose causada pelo protozoário flagelado Trypanosoma cruzi. Estima-se que 8 milhões de pessoas estão infectadas com o T. cruzi em todo o mundo, principalmente na América Latina. Testes tradicionais de diagnóstico estão sendo gradualmente substituídos por métodos inovadores. A utilização de antígenos recombinantes foi proposta nos anos 90, e várias combinações foram testadas com soros de pacientes com diferentes formas clínicas de diferentes regiões da América Latina. Apesar do ganho em especificidade, estes testes apresentaram menor sensibilidade, frustrando expectativas. Este estudo objetivou analisar a variabilidade genética dos genes KMP11 e 1F8 que codificam antígenos comumente utilizados em diagnóstico experimental. Cepas de T. cruzi pertencentes a diferentes sub-grupos taxonômicos e de diferentes regiões foram analisadas para avaliar o impacto da variação antigênica em testes de diagnóstico. Maximizando a sensibilidade, evitar reatividade cruzada com epítopos de outros agentes patogênicos deve permitir a concepção de melhores testes rápidos. Num primeiro passo, DNA genômico foi extraído das seguintes cepas: Dm28c, Colombiana, Y, 3663, 4167, LL014 e CL Brener e foi realizada a amplificação dos genes 1F8 e KMP11 que codificam antígenos a partir destas cepas. Em seguida foram realizadas a clonagem, sequenciamento, expressão e detecção dos antígenos recombinantes. Na etapa final, análises de estruturas secundárias e terciárias, a última apenas para o antígeno 1F8, visualizaram as diferenças nas sequências de aminoácidos obtidas a partir de sequenciamento de DNA. Os resultados apresentados neste estudo mostram que o antígeno KMP11 de T. cruzi possui uma similaridade na sequência de aminoácidos muito elevada com o T. rangeli, mostrando a necessidade de um mapeamento antigênico desta proteína em todos os tripanosomatídeos que apresentaram alta similaridade com o antígeno de T. cruzi, como o T. rangeli, para verificar a presença de epítopos específicos de T. cruzi. O antígeno 1F8 pode ser uma ferramenta útil no diagnóstico da doença de Chagas e que será necessário aprofundar os conhecimentos sobre os determinantes antigênicos para futuramente elaborar poli-epítopos sintéticos adaptados de um maior número possível de antígenos, obtendo a maior especificidade e sensibilidade nos testes de diagnóstico sorológico e de teste rápido da doença de Chagas. Este estudo representa um passo crucial para a otimização de antígenos recombinantes para o diagnóstico da doença de Chagas.
Resumo:
Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.
Resumo:
Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation. © 2013 Elsevier Ltd.
Resumo:
White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with-full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron Microscopy, Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV. (c) 2008 Published by Elsevier Inc.
Resumo:
The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1-14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1-6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1-7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.
Resumo:
The humoral immune responses of grouper Epinephelus akaara to a natural infection with Glugea epinephelusis was studied by ELISA utilizing intact mature spores as the coated antigen. Results showed that a specific humoral immune response was elicited, but the intensity of infection (in terms of the number of cysts) was not related to the antibody level in naturally infected hosts. The differences in the antigenicity of intact mature spores and soluble spore proteins derived from cracked mature spores were also analyzed. Results suggested that similar antigen epitopes existed between the 2 groups. Additionally, antigen component patterns and the distribution of antigen with immunogenicity were investigated by using the western blot and the immunofluorescent antibody technique (IFAT). The new parasitic microsporidium has specific polypeptide patterns comparable to the reported fish microsporidians. The main antigenic substances are concentrated on the surface of spores, and are mostly located on the anterior and posterior end of the spore bodies. Most surface components of the G. epinephelusis spores are soluble, The potential role of the surface components in initiating infection was also discussed.
Resumo:
Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals. Cellular & Molecular Immunology. 2005;2(4):289-293.
Resumo:
Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha (2a) and anti-interferon-alpha (2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible). Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: Persistent polyclonal B cell lymphocytosis (PPBL) is a rare condition characterized by increased IgM and large excess of B cells with an IgD(+) CD27(+) phenotype. In normal individuals, these cells play a central role in the defense against pneumococcal infection. So far, few studies have characterized humoral immune responses in PPBL patients. We therefore measured IgG directed against S. pneumoniae antigens in a 51 yr-old woman with PPBL before and after vaccination with a pneumococcal 23-valent polysaccharide vaccine. METHODS: Antibodies against pneumococcal antigens were measured first with an overall immunoassay using microplates coated with the 23-valent pneumococcal vaccine. A serotype-specific test was also performed according to the WHO consensus protocol. RESULTS: Despite a large number of IgD(+) CD27(+) cells, our patient had low baseline titers of IgG directed against pneumococcal antigens and did not significantly respond to a 23-valent polysaccharide vaccine against S. pneumoniae. On the contrary, she had good titers of IgG directed against tetanus toxoid. CONCLUSION: IgM(+) IgD(+) CD27(+) cells which accumulate in this patient with typical PPBL patient failed to perform IgG isotype switch after a polysaccharide vaccine. The potential mechanisms and relationships with the main features of PPBL are discussed. Further studies on a larger number of similar patients are needed.
Resumo:
Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues.
Resumo:
Consensus HIV-1 genes can decrease the genetic distances between candidate immunogens and field virus strains. To ensure the functionality and optimal presentation of immunologic epitopes, we generated two group-M consensus env genes that contain variable regions either from a wild-type B/C recombinant virus isolate (CON6) or minimal consensus elements (CON-S) in the V1, V2, V4, and V5 regions. C57BL/6 and BALB/c mice were primed twice with CON6, CON-S, and subtype control (92UG37_A and HXB2/Bal_B) DNA and boosted with recombinant vaccinia virus (rVV). Mean antibody titers against 92UG37_A, 89.6_B, 96ZM651_C, CON6, and CON-S Env protein were determined. Both CON6 and CON-S induced higher mean antibody titers against several of the proteins, as compared with the subtype controls. However, no significant differences were found in mean antibody titers in animals immunized with CON6 or CON-S. Cellular immune responses were measured by using five complete Env overlapping peptide sets: subtype A (92UG37_A), subtype B (MN_B, 89.6_B and SF162_B), and subtype C (Chn19_C). The intensity of the induced cellular responses was measured by using pooled Env peptides; T-cell epitopes were identified by using matrix peptide pools and individual peptides. No significant differences in T-cell immune-response intensities were noted between CON6 and CON-S immunized BALB/c and C57BL/6 mice. In BALB/c mice, 10 and eight nonoverlapping T-cell epitopes were identified in CON6 and CON-S, whereas eight epitopes were identified in 92UG37_A and HXB2/BAL_B. In C57BL/6 mice, nine and six nonoverlapping T-cell epitopes were identified after immunization with CON6 and CON-S, respectively, whereas only four and three were identified in 92UG37_A and HXB2/BAL_B, respectively. When combined together from both mouse strains, 18 epitopes were identified. The group M artificial consensus env genes, CON6 and CON-S, were equally immunogenic in breadth and intensity for inducing humoral and cellular immune responses.
Resumo:
Somatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer (33)QTEPYYDLTSNA(44), which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface-detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG(3) MAb exhibited a 50-100% IRF, but low KA. Four IgG(2a) MAbs had 46-94% IRFs and modest KAs versus intact cells (0.21-1.2 x 10(8) M(-1)). Following binding of radiolabeled MAbs to D341 MED at 4 degrees C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37 degrees C after 2 h was 65-66%, and after 24 h, 52-64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 x 10(4) for the "glial" phenotype DAOY MED cell line and 0.6-8.8 x 10(5) for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs.