904 resultados para Distributed Control System
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Incomplete pairwise comparison matrix was introduced by Harker in 1987 for the case in which the decision maker does not fill in the whole matrix completely due to, e.g., time limitations. However, incomplete matrices occur in a natural way even if the decision maker provides a completely filled in matrix in the end. In each step of the total n(n–1)/2, an incomplete pairwise comparison is given, except for the last one where the matrix turns into complete. Recent results on incomplete matrices make it possible to estimate inconsistency indices CR and CM by the computation of tight lower bounds in each step of the filling in process. Additional information on ordinal inconsistency is also provided. Results can be applied in any decision support system based on pairwise comparison matrices. The decision maker gets an immediate feedback in case of mistypes, possibly causing a high level of inconsistency.
Resumo:
A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^
Resumo:
Hospitality managers may assume that unless under control, ethics in their operations are out of control. This article proposes a management control system for ethics.
Resumo:
The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.
Resumo:
Human standing posture is inherently unstable. The postural control system (PCS), which maintains standing posture, is composed of the sensory, musculoskeletal, and central nervous systems. Together these systems integrate sensory afferents and generate appropriate motor efferents to adjust posture. The PCS maintains the body center of mass (COM) with respect to the base of support while constantly resisting destabilizing forces from internal and external perturbations. To assess the human PCS, postural sway during quiet standing or in response to external perturbation have frequently been examined descriptively. Minimal work has been done to understand and quantify the robustness of the PCS to perturbations. Further, there have been some previous attempts to assess the dynamical systems aspects of the PCS or time evolutionary properties of postural sway. However those techniques can only provide summary information about the PCS characteristics; they cannot provide specific information about or recreate the actual sway behavior. This dissertation consists of two parts: part I, the development of two novel methods to assess the human PCS and, part II, the application of these methods. In study 1, a systematic method for analyzing the human PCS during perturbed stance was developed. A mild impulsive perturbation that subjects can easily experience in their daily lives was used. A measure of robustness of the PCS, 1/MaxSens that was based on the inverse of the sensitivity of the system, was introduced. 1/MaxSens successfully quantified the reduced robustness to external perturbations due to age-related degradation of the PCS. In study 2, a stochastic model was used to better understand the human PCS in terms of dynamical systems aspect. This methodology also has the advantage over previous methods in that the sway behavior is captured in a model that can be used to recreate the random oscillatory properties of the PCS. The invariant density which describes the long-term stationary behavior of the center of pressure (COP) was computed from a Markov chain model that was applied to postural sway data during quiet stance. In order to validate the Invariant Density Analysis (IDA), we applied the technique to COP data from different age groups. We found that older adults swayed farther from the centroid and in more stochastic and random manner than young adults. In part II, the tools developed in part I were applied to both occupational and clinical situations. In study 3, 1/MaxSens and IDA were applied to a population of firefighters to investigate the effects of air bottle configuration (weight and size) and vision on the postural stability of firefighters. We found that both air bottle weight and loss of vision, but not size of air bottle, significantly decreased balance performance and increased fall risk. In study 4, IDA was applied to data collected on 444 community-dwelling elderly adults from the MOBILIZE Boston Study. Four out of five IDA parameters were able to successfully differentiate recurrent fallers from non-fallers, while only five out of 30 more common descriptive and stochastic COP measures could distinguish the two groups. Fall history and the IDA parameter of entropy were found to be significant risk factors for falls. This research proposed a new measure for the PCS robustness (1/MaxSens) and a new technique for quantifying the dynamical systems aspect of the PCS (IDA). These new PCS analysis techniques provide easy and effective ways to assess the PCS in occupational and clinical environments.
Resumo:
In this work, a Hardware-in-the-loop test bench is designed. The bench is used to test the behaviour of an electronic control unit used in Maserati to control the dynamics of an air spring system. First the mathematical model of the plant has been defined, then the simulation enviroment and the test environment have been set up. The performed tests succesfully highlighted some bugs in the device under test.
Resumo:
The research project aims to study and develop control techniques for a generalized three-phase and multi-phase electric drive able to efficiently manage most of the drive types available for traction application. The generalized approach is expanded to both linear and non- linear machines in magnetic saturation region starting from experimental flux characterization and applying the general inductance definition. The algorithm is able to manage fragmented drives powered from different batteries or energy sources and will be able to ensure operability even in case of faults in parts of the system. The algorithm was tested using model-in-the-loop in software environment and then applied on experimental test benches with collaboration of an external company.
Resumo:
L'étude vise à évaluer l'exposition professionnelle au bruit des travailleurs d'une plateforme gazière en Algérie et à mettre en évidence des déterminants influençant cette exposition. Des groupes d'exposition homogène (GEH) ont été constitués sur la base de ressemblances quant à l'exposition au bruit, aux titres d'emploi et aux lieux de travail. Deux stratégies d'échantillonnage ont été suivies, la première selon la norme internationale ISO 9612 : 2009 et la seconde selon la stratégie aléatoire de l'AIHA. Pour les deux approches, les niveaux de bruit (Lex, 8h, niveaux d'exposition au bruit pondéré (A) ajustés à une journée de travail de 8 heures) des opérateurs et des superviseurs étaient généralement > 85 dB(A) alors que pour les techniciens-tableau, les niveaux de bruit (Lex, 8h) étaient en tout temps < 85 dB(A). Pour les trois GEH du titre d'emploi des maintenanciers, il y a eu régulièrement des dépassements de la valeur de référence. Plusieurs travailleurs oeuvrant sur les plateformes gazières sont exposés à des niveaux importants de bruit et sont à risque de développer des problèmes auditifs.