974 resultados para Digital camera
Resumo:
Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes
Resumo:
The dataset consists of spectra and photogrpahs of the surface (sea ice and melt ponds) obtained in the Central Arctic during the Polarstern cruise ARK-XXVII/3 at 6 ice stations. The spectra were measured with a portable spectroradiometer ASD FieldSpecPro 3. The photographs were taken with a digital camera Olympus C765 in the "Auto" mode. The measurements have been performed every 10 meters along 100 m ROV transects (transects used for underice ROV flights) where available. Otherwise the albedo measurements have been done at the selected cites complementary to point transmitance measurements or at cites featuring characteristic sea ice surface.
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.
Resumo:
This study aimed at identifying morpho-species of microplankton dinoflagellates (> 20 μm) of the order Peridiniales and Prorocentrales off Santa Marta Grande Cape, CSMG (SC, 28º 40’ S) and Albardão-Chui, AC ( r S, 34º 40’ S) during oceanographic cruises conducted in winter 2005 and summer 2007. Plankton samples were obtained by vertical net (mesh size 20 μm) hauls preserved with formaldehyde 4% and analyzed using the inverted microscope equipped with a digital camera. The identification of Peridiniales species was based on the number and morphology of thecal plates enhanced with Calco Fluor White M r 2 whenever necessary and the identification of Prorocentrales was based on cell size, shape, presence of apical processes, pore pattern and marks at the intercalary band. We identified 25 species, including Protoperidinium (11), Prorocentrum (6), Corythodinium (3), Podolampas (2), Oxytoxum (2) and Heterocapsa (1). Prorocentrum species were widely distributed on the continental shelf of southern Brazil, while Peridiniales species were mainly found off Albardão-Chui during winter, especially under the influence of the plume of La Plata River. Oxytoxum milneri was the first time recorded in southern Brazil, while Protoperidinium cassum var. cassum , P. curtipes and Heterocapsa triquetra , were first registered in Brazil.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
This article is a call to literacy teachers and researchers to embrace the possibility of attending more consciously to the senses in digital media production. Literacy practices do not occur only in the mind, but involve the sensoriality, embodiment, co-presence, and movement of bodies. This paper theorises the sensorial and embodied dimension of children’s filmmaking about place in two communities in Australia. The films were created by pre-teen Indigenous and non-Indigenous children in Logan, Queensland, and by Indigenous teenagers at the Warralong campus of the Strelley Community School in remote Western Australia. The films were created through engagement in cross-curricular units that sensitised the students’ experience of local places, gathering corporeal information through their sensing bodies as they interacted with the local ecology. The analysis highlights how the sensorial and bodily nature of literacy practice through documentary filmmaking was central to the children’s formation and representation of knowledge, because knowledge and literacy practices are not only acquired through the mind, but are also reliant on embodiment, sensoriality, co-presence, and kinesics of the body in place.
Resumo:
At the highest level of competitive sport, nearly all performances of athletes (both training and competitive) are chronicled using video. Video is then often viewed by expert coaches/analysts who then manually label important performance indicators to gauge performance. Stroke-rate and pacing are important performance measures in swimming, and these are previously digitised manually by a human. This is problematic as annotating large volumes of video can be costly, and time-consuming. Further, since it is difficult to accurately estimate the position of the swimmer at each frame, measures such as stroke rate are generally aggregated over an entire swimming lap. Vision-based techniques which can automatically, objectively and reliably track the swimmer and their location can potentially solve these issues and allow for large-scale analysis of a swimmer across many videos. However, the aquatic environment is challenging due to fluctuations in scene from splashes, reflections and because swimmers are frequently submerged at different points in a race. In this paper, we temporally segment races into distinct and sequential states, and propose a multimodal approach which employs individual detectors tuned to each race state. Our approach allows the swimmer to be located and tracked smoothly in each frame despite a diverse range of constraints. We test our approach on a video dataset compiled at the 2012 Australian Short Course Swimming Championships.
Resumo:
Many applications can benefit from the accurate surface temperature estimates that can be made using a passive thermal-infrared camera. However, the process of radiometric calibration which enables this can be both expensive and time consuming. An ad hoc approach for performing radiometric calibration is proposed which does not require specialized equipment and can be completed in a fraction of the time of the conventional method. The proposed approach utilizes the mechanical properties of the camera to estimate scene temperatures automatically, and uses these target temperatures to model the effect of sensor temperature on the digital output. A comparison with a conventional approach using a blackbody radiation source shows that the accuracy of the method is sufficient for many tasks requiring temperature estimation. Furthermore, a novel visualization method is proposed for displaying the radiometrically calibrated images to human operators. The representation employs an intuitive coloring scheme and allows the viewer to perceive a large variety of temperatures accurately.
Resumo:
This sensory ethnography explores the affordances and constraints of multimodal design to represent emotions and appraisal associated with experiencing local places. Digital video production, walking with the camera, and the use of a think-aloud protocol to reflect on the videos, provided an opportunity for the primary school children to represent their emotions and appraisal of places multimodally. Applying a typology from Martin and White's (2005) framework for the Language of Evaluation, children's multimodal emotional responses to places in this study tended toward happiness, security, and satisfaction. The findings demonstrate an explicit connection between children's emotions in response to local places through video, while highlighting the potential for teachers to use digital filmmaking to allow children to reflect actively on their placed experiences and represent their emotional reactions to places through multiple modes.
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.